首页> 外文学位 >The use of diffusion multiples to explore the Co-Cr-Fe-Mn-Ni high entropy system.
【24h】

The use of diffusion multiples to explore the Co-Cr-Fe-Mn-Ni high entropy system.

机译:利用扩散倍数探索Co-Cr-Fe-Mn-Ni高熵体系。

获取原文
获取原文并翻译 | 示例

摘要

High entropy alloys (HEAs) or Multi-principal element alloys (MEAs) are a relatively new class of alloys. These alloys are defined as having at least five major alloying elements in atomic percent from 5% to 35%. There are hundreds of thousands of equiatomic compositions possible and only a fraction have been explored. This project examines diffusion multiples as a method to accelerate alloy development in these systems. The system chosen for this experiment is the Co-Cr-Fe-Mn-Ni system. The methodology developed for creating these diffusion multiples involved a two-step process. In the first step two binary alloys (50at-% Fe-Mn and 50 at%- Ni-Co ) were diffusion bonded together. In the second step, under uniaxial compression, was used to bond Cr to diffusion couple prepared in Step I. Successful diffusion multiples were created by this method. An auxiliary method named differential melting liquid impingement (DMLI) was developed that created diffusion multiples using liquid processing methods that will be described. After creation of these multiples, the ternary and quinary interface regions were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and nanoindentation. The Cr/NiCo region experienced interdiffusion but no intermediate phase formation retaining the FCC / BCC interface at the hot-pressing temperature (1200 °C). However, upon cooling from 1200 °C, the BCC region adjacent to the interface decomposed into BCC + sigma. In contrast, the Cr/FeMn interface region developed a layered structure of FCC/sigma/BCC suggesting that sigma is stable at 1200 °C in contradiction to the published 1200 °C ternary phase diagram. Upon cooling, the sigma present at 1200 °C decomposed into FCC + sigma, except in samples that were contaminated with C; in those cases, FCC + M23C6 was observed as the decomposition product. The quinary regions were evaluated using the various HEA parameters, namely, DeltaSmix, DeltaHmix, O, Deltachi, and delta. No strong correlations with phase stability were found using these parameters in contrast to expectations based on the literature. It was found that Cr solubility in the quinary disordered FCC varied linearly between the two ternary system endpoints (Co-Cr-Ni and Cr-Fe-Mn) Additionally, while nano-hardness maps did not support the severe lattice distortion hypothesis proposed for HEAs, a comparison of different solid solution strengthening mechanisms suggests that elastic modulus mismatch and a change in the lattice friction stress were the most likely contributors to strengthening.
机译:高熵合金(HEA)或多主元素合金(MEA)是一类相对较新的合金。这些合金被定义为具有至少五个主要合金元素,原子百分比为5%至35%。可能存在成千上万的等原子组成,并且仅探索了一部分。该项目研究了扩散倍数作为加速这些系统中合金发展的一种方法。本实验选择的系统是Co-Cr-Fe-Mn-Ni系统。为创建这些扩散倍数而开发的方法涉及两步过程。在第一步中,将两种二元合金(50原子%的Fe-Mn和50原子%的Ni-Co)扩散结合在一起。第二步,在单轴压缩下,将Cr与步骤I中制备的扩散偶结合。通过这种方法成功地形成了扩散倍数。开发了一种称为微分熔融液体撞击(DMLI)的辅助方法,该方法使用将要描述的液体处理方法创建了扩散倍数。创建这些倍数后,使用扫描电子显微镜(SEM),透射电子显微镜(TEM),能量色散光谱(EDS)和纳米压痕检查三元和五元界面区域。 Cr / NiCo区域经历了相互扩散,但没有中间相形成,而在热压温度(1200°C)下保留了FCC / BCC界面。但是,从1200°C冷却后,与界面相邻的BCC区域分解为BCC + sigma。相反,Cr / FeMn界面区域形成了FCC / sigma / BCC的分层结构,这表明sigma在1200°C时是稳定的,这与已发布的1200°C三元相图相反。冷却后,在1200°C下存在的sigma分解为FCC + sigma,但被C污染的样品除外。在这些情况下,观察到FCC + M23C6作为分解产物。使用各种HEA参数(即DeltaSmix,DeltaHmix,O,Deltachi和delta)评估五元区。与基于文献的预期相比,使用这些参数没有发现与相稳定性的强相关性。发现在三元无序FCC中的Cr溶解度在两个三元体系终点(Co-Cr-Ni和Cr-Fe-Mn)之间呈线性变化,此外,尽管纳米硬度图不支持针对HEA提出的严重晶格畸变假设,对不同固溶强化机制的比较表明,弹性模量不匹配和晶格摩擦应力的变化最可能是强化的原因。

著录项

  • 作者

    Wilson, Paul Nathaniel.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Materials science.
  • 学位 M.S.
  • 年度 2015
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号