首页> 外文学位 >Near-field radiative energy transfer at nanometer distances .
【24h】

Near-field radiative energy transfer at nanometer distances .

机译:纳米距离的近场辐射能量转移。

获取原文
获取原文并翻译 | 示例

摘要

Near-field thermal radiation which can exceed blackbody radiation by several orders of magnitude has potential applications in energy conversion devices, nanofabrication, and near-field imaging. The present dissertation provides a comprehensive and thorough investigation of near-field heat transfer between parallel plates at nanometer distances.;The first part of this dissertation focuses on the fundamentals of nanoscale thermal radiation through a systematic study on the near-field heat transfer between doped Si plates. In order to calculate the near-field heat transfer, it is important to accurately predict the dielectric function of doped Si. The dielectric function of doped Si which is described by the Drude model is a function of carrier concentration and mobility. Hence, accurate ionization and carrier mobility models for both p- and n-type Si are identified after a careful review of the available literature. The radiative properties calculated using the improved dielectric function agrees to a good extent with measurements performed using a FTIR. The near-field heat transfer between doped Si plates at varying doping levels is then calculated using the improved dielectric functions. Several important and characteristic features of near-field radiation are revealed in the analysis. An interesting issue regarding the maximum achievable nanoscale thermal radiation arises out of the study on near-field heat transfer in doped Si.;The second part of this dissertation investigates the maximum achievable nearfield thermal radiation between two plates at finite vacuum gaps. Initially, both the emitter and the receiver are assumed to have identical frequency-independent dielectric functions and a cut off in the order of the lattice spacing is set on the upper limit of the wavevector. The energy transfer is maximum when the real part of dielectric function is around -1 due to surface waves. On the other hand, there is a strong relationship between the imaginary part of the dielectric function and the vacuum gap. While the study using frequency independent dielectric function is not realistic, it lays down the guidelines for the parametric optimization of dielectric functions of real materials for achieving maximum near-field heat transfer. A parametric study of the different adjustable parameters in the Drude and Lorentz model is performed in order to analyze their effect on the near-field heat transfer. It is seen that the optimized Drude model always results in greater near-field heat transfer compared to the Lorentz model and the maximum achievable near-field heat transfer is nearly 1 order greater than that between real materials.;In the third part of this dissertation, the unusual penetration depth and the energy streamlines in near-field thermal radiation are studied. It is seen that unlike far-field radiation, the penetration depth in near-field heat transfer is dependent on the vacuum gap. This unusual feature results in a 10 nm thick SiC film behaving as completely opaque when the vacuum gap is around 10 nm. The energy streamlines inside the emitter, receiver, and the vacuum gap are calculated using fluctuation electrodynamics and errors generated due to thin film optics are pointed out. It is seen that the lateral shift of the streamlines inside the emitter can be greater than that in the vacuum gap for SiC. However, for doped Si, the lateral shift is comparable in the different media. While the study on the penetration depth determines the thickness of the emitter, the streamlines determine the lateral dimension.
机译:可以超过黑体辐射几个数量级的近场热辐射在能量转换设备,纳米加工和近场成像中具有潜在的应用。本文对纳米级平行平板之间的近场热传递进行了全面而深入的研究。本文的第一部分通过对掺杂之间的近场热传递进行系统研究,着重研究了纳米级热辐射的基础。硅板。为了计算近场热传递,重要的是准确地预测掺杂的Si的介电函数。 Drude模型描述的掺杂Si的介电函数是载流子浓度和迁移率的函数。因此,在仔细查阅现有文献后,可以确定p型和n型Si的精确电离和载流子迁移率模型。使用改进的介电函数计算出的辐射特性与使用FTIR进行的测量在很大程度上吻合。然后,使用改进的介电函数计算出掺杂水平不同的掺杂Si板之间的近场热传递。分析揭示了近场辐射的几个重要特征。关于掺杂硅中近场热传递的研究引起了一个关于最大可实现的纳米级热辐射的有趣问题。本论文的第二部分研究了在有限真空间隙下两块板之间最大可实现的近场热辐射。最初,假设发射器和接收器都具有相同的频率无关介电函数,并且在波矢的上限上设置了晶格间距顺序的截止值。当介电函数的实部由于表面波而在-1附近时,能量传递最大。另一方面,介电函数的虚部与真空间隙之间存在很强的关系。尽管使用频率无关的介电函数进行研究是不切实际的,但它为实现最大近场热传递的真实材料介电函数的参数优化奠定了指导原则。为了分析它们对近场热传递的影响,对Drude和Lorentz模型中的不同可调参数进行了参数研究。可以看出,与Lorentz模型相比,优化的Drude模型总是产生更大的近场热传递,并且最大可实现的近场热传递比真实材料之间的传递高近1个数量级。 ,研究了近场热辐射中的异常穿透深度和能量流线。可以看出,与远场辐射不同,近场热传递的穿透深度取决于真空间隙。当真空间隙为10 nm左右时,这种不寻常的特征导致10 nm厚的SiC膜表现为完全不透明。发射器,接收器和真空间隙内部的能量流线是使用波动电动力学来计算的,指出了由于薄膜光学器件而产生的误差。可以看出,发射器内部流线的横向位移可能大于SiC真空间隙中的横向位移。但是,对于掺杂的Si,在不同的介质中横向位移是可比较的。对穿透深度的研究确定了发射器的厚度,而流线确定了横向尺寸。

著录项

  • 作者

    Basu, Soumyadipta.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号