首页> 外文学位 >Investigation of ferrite and cerium-based solar thermal chemistry for production of solar fuels.
【24h】

Investigation of ferrite and cerium-based solar thermal chemistry for production of solar fuels.

机译:研究用于生产太阳能燃料的铁氧体和铈基太阳能热化学。

获取原文
获取原文并翻译 | 示例

摘要

As global hunger for energy increases and conventional energy sources begin to dwindle, a new generation of energy technologies will be necessary for the continued advancement of human society. Recent interest in solar energy technologies in particular has given rise to increasingly popular photovoltaic systems which directly convert solar energy to electricity. Another form of solar utilization lies with concentrated solar power. Instead of directly converting sunlight to usable energy, this method uses the heat from concentrated sunlight to drive chemical reactions and produce fuels. While currently less developed, concentrated solar power can offer a significant advantage over its photovoltaic counterpart in storage and portability. That is, solar fuels can be stored, transported, and converted for flexible use.;The work herein discusses thermochemical cycling, a type of concentrated solar power that harnesses the heat from sunlight to drive oxidation and reduction reactions. Oxidation of an intermediate reactive material with water and/or carbon dioxide produces hydrogen or syngas fuels. Reduction at high temperature using solar thermal energy removes oxygen and primes the material for a new oxidation cycle, thus representing a regenerative cycle that produces fuel constantly with a supply of sunlight and water/CO2. The efficacy of thermochemical cycling primarily depends upon the intermediate reactive material. Many reactive materials have been studied for their fuel-producing and thermal reduction capacities over small number of cycles. Reactivity, however, tends to decrease with increasing cycles due to effects such as sintering, thermal deactivation, or physical degradation. Thus, it is also of importance to consider materials' long term fuel production potential, or reactive stability, over many cycles. While initial fuel production is important, materials need to exhibit a stable fuel production capacity over many cycles to prove economically viable.;This work investigates the thermochemical cycling potential of iron and cerium oxide. Thermogravimetry is used to both assess their initial fuel production capabilities and characterize their reactive stability over many cycles. SEM imaging and Raman spectroscopy is utilized to characterize structure and chemical composition. Finally, a brief economic analysis is presented for a prototype modular concentrating solar reactor using cerium oxide as its reactive material.
机译:随着全球对能源的渴望增加,传统能源开始减少,对于人类社会的持续发展,新一代能源技术将是必需的。特别是最近对太阳能​​技术的兴趣引起了越来越流行的将太阳能直接转换为电能的光伏系统。太阳能利用的另一种形式是集中太阳能。该方法不是将阳光直接转换成可用的能量,而是利用来自聚集阳光的热量来驱动化学反应并产生燃料。尽管目前尚不发达,但聚光太阳能在存储和便携性方面可以提供比光伏发电更大的优势。即,太阳能燃料可以存储,运输和转换以灵活使用。本文的工作讨论了热化学循环,这是一种利用太阳光的热量驱动氧化和还原反应的集中太阳能。中间反应性材料用水和/或二氧化碳的氧化产生氢气或合成气燃料。使用太阳能在高温下进行还原可除去氧气并为该材料准备新的氧化循环,从而代表了一种再生循环,该循环不断产生燃料,并提供阳光和水/ CO2。热化学循环的功效主要取决于中间反应材料。已经研究了许多反应性材料在短周期内的燃料产生和热还原能力。然而,由于诸如烧结,热失活或物理降解的影响,反应性趋于随着循环的增加而降低。因此,在许多循环中考虑材料的长期燃料生产潜力或反应稳定性也很重要。虽然最初的燃料生产很重要,但材料需要在许多循环中表现出稳定的燃料生产能力,以证明在经济上可行。这项工作研究了铁和二氧化铈的热化学循环潜力。热重分析法既可以评估其初始燃料生产能力,又可以表征其在许多循环中的反应稳定性。 SEM成像和拉曼光谱用于表征结构和化学成分。最后,对使用氧化铈作为其反应性材料的原型模块化聚光太阳能反应器进行了简要的经济分析。

著录项

  • 作者

    Rhodes, Nathan Ray.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Mechanical engineering.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号