首页> 外文学位 >Synthesis and Characterization of Protein-Conjugated Silver Nanoparticles/Silver Salt Loaded Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Film for Prevention of Bacterial Infections and Potential Use in Bone Tissue Engineering Applications.
【24h】

Synthesis and Characterization of Protein-Conjugated Silver Nanoparticles/Silver Salt Loaded Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Film for Prevention of Bacterial Infections and Potential Use in Bone Tissue Engineering Applications.

机译:蛋白质缀合的银纳米颗粒/银盐负载的聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)膜的合成与表征,用于预防细菌感染以及在骨组织工程应用中的潜在用途。

获取原文
获取原文并翻译 | 示例

摘要

Failure of orthopedic implants due to bacterial infection has been a major concern in bone tissue engineering. To this end, we have formulated a potential orthopedic implant made of naturally occurring biodegradable polymer, i.e. poly (3-hydroxylbutyrate-co-3-hydroxylvalerate) (PHBV), modified with BSA conjugated silver nanoparticles and or silver chloride. Upon release of Ag NPs and or Ag+ in the implant region, can promote aseptic environment by inhibition of bacteria growth and also support/maintain bone cell adhesion, growth, and proliferation.;For formulating nanoparticles loaded PHBV scaffold, we exploit specific interaction between bovine serum albumin (BSA) of BSA capped silver nanoparticles and collagen of collagen immobilized PHBV scaffold. Therefore, the first part of this study dealt with synthesis and characterization of collagen immobilized PHBV film for loading of BSA stabilized silver (Ag/BSA) nanoparticles. Two different approaches were used to immobilize collagen on macroporous PHBV film. First approach uses thermal radical copolymerization with 2-hydroxyethylmethacrylate (HEMA), while the second approach uses aminolysis to functionalize macroporous PHBV film. Using collagen crosslinker, type I collagen was covalently grafted to formulate collagen immobilized PHEMA-g-PHBV and collagen immobilized NH2-PHBV films, respectively. Spectroscopic (FTIR, XPS), physical (SEM), and thermal (TGA) techniques were used to characterize the functionalized PHBV films. The Ag/BSA nanoparticles were then loaded on collagen immobilized PHBV films and untreated PHBV films. The concentration of nanoparticles loaded on PHBV film was determined by atomic absorption spectrometry and fluorescence spectroscopy. The amount of nanoparticles loaded on collagen immobilized PHBV film was found to be significantly greater than that on untreated PHBV film. The amount of Ag/BSA nanoparticles loaded on collagen immobilized PHBV film was found to depend on the concentration of Ag/BSA nanoparticles solution used for loading and on the molecular weight of type I collagen used in collagen immobilization on PHBV film. At physiological pH, optimum amount of nanoparticles was retained on Type I collagen immobilized PHBV film because at pH 7.4, protonated amino groups of collagen immobilized PHBV film promote strong electrostatic interaction with the carboxylate anions of BSA stabilized silver nanoparticles.;The second part of this study dealt with formulating AgCl/PHBV film that can potentially release silver ions for effective antimicrobial activity. In this study, we formulated AgCl/PHBV composite film by a salt exchange mechanism. Thermogravimetric analysis (TGA) was used to quantify the amount of NaCl present before and after salt exchange. The Na content in the pre-washed and partially washed NaCl/PHBV film was found to be 43.60% and 1.24% by mass, respectively. The AgCl/PBHV composite film was acid digested and assayed for Na+ and Ag+ content by using Atomic Absorption Spectrometry (AAS) and was found to be 2.15 and 10.25 ppm, respectively. XPS technique was used to characterize the surface elemental composition of the AgCl/PHBV composite film. The survey spectrum of AgCl/PHBV film showed emergence of Ag 3d and Cl 2s peaks compared to pure PHBV which was predominantly composed of C 1s and O 1s peaks. The release kinetics of silver ions from AgCl/PHBV composite film showed an initial burst of about 1.5 ppm of silver ions during the first day of desorption followed by a gradual release of silver ions at an average rate of 0.3 ppm per day during the span of two weeks studied.;Ag/BSA nanoparticles loaded collagen immobilized PHBV films and AgCl/PHBV composite films were tested for antibacterial efficacy against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Colony forming unit and optical density measurements of Ag/BSA nanoparticles loaded collagen immobilized PHBV films showed broad antimicrobial activity at low Ag/BSA nanoparticles concentration (0.19and 0.31 microg) compared to commercially available gentamicin and sulfamethoxazole/trimethoprim which showed sometimes selective antimicrobial activity and antimicrobial activity at high concentration (10 microg and 23.75/1.25 microg/disc). Additionally, a clear zone of inhibition around AgCl/PHBV composite film was noticed on a modified Kirby-Bauer disk diffusion assay. Optical density results and colony forming unit measurements showed that AgCl/PHBV composite film exhibit broad bactericidal activity.;Next, we evaluated the cytotoxicity of Ag/BSA nanoparticles loaded collagen immobilized PHBV films and AgCl/PHBV composite films towards MC3T3-E1 cells at the same concentration both films showed broad antimicrobial activity. By using MTT assay, we established that Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed minimal, if any, cytotoxic effect towards MC3T3-E1 cells while AgCl/PHBV composite film showed significant cytotoxic effect compared to tissue culture polystyrene.;Our research findings provide several formulations for preparation of scaffold, if properly tuned; it can be used as a potential biocompatible and biodegradable scaffold for the prevention of bacterial infections and promotion of cell attachment and proliferation in bone tissue engineering applications.
机译:由于细菌感染导致的骨科植入物的失败一直是骨组织工程中的主要关注点。为此,我们配制了一种潜在的骨科植入物,该植入物由天然存在的可生物降解的聚合物制成,即用BSA共轭银纳米颗粒和/或氯化银改性的聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)。在植入区域释放Ag NP和/或Ag +后,可通过抑制细菌生长来促进无菌环境,并支持/维持骨细胞粘附,生长和增殖。为了配制负载PHBV纳米粒子的支架,我们利用了牛与牛之间的特异性相互作用牛血清白蛋白(BSA)封端的银纳米颗粒和胶原蛋白固定的PHBV支架的胶原蛋白。因此,本研究的第一部分涉及固定化胶原蛋白的PHBV膜的合成和表征,以负载BSA稳定的银(Ag / BSA)纳米颗粒。使用两种不同的方法将胶原蛋白固定在大孔PHBV膜上。第一种方法使用与甲基丙烯酸2-羟乙酯(HEMA)进行热自由基共聚,而第二种方法使用氨解作用使PHBV大孔膜功能化。使用胶原交联剂,将I型胶原共价接枝,分别制成胶原固定的PHEMA-g-PHBV和胶原固定的NH2-PHBV膜。光谱(FTIR,XPS),物理(SEM)和热(TGA)技术用于表征功能化的PHBV膜。然后将Ag / BSA纳米颗粒加载到胶原蛋白固定的PHBV膜和未处理的PHBV膜上。通过原子吸收光谱法和荧光光谱法测定负载在PHBV膜上的纳米颗粒的浓度。发现负载在胶原蛋白固定的PHBV膜上的纳米粒子的数量明显大于未处理的PHBV膜上的纳米粒子的数量。发现负载在胶原蛋白固定的PHBV膜上的Ag / BSA纳米颗粒的量取决于用于负载的Ag / BSA纳米颗粒溶液的浓度以及用于胶原蛋白固定在PHBV膜上的I型胶原蛋白的分子量。在生理pH下,I型胶原蛋白固定的PHBV膜上保留了最适量的纳米颗粒,因为在pH 7.4时,胶原蛋白固定的PHBV膜的质子化氨基促进了与BSA稳定化的银纳米颗粒的羧酸根阴离子的强烈静电相互作用。研究涉及配制AgCl / PHBV膜,该膜可能会释放银离子,从而具有有效的抗菌活性。在这项研究中,我们通过盐交换机制配制了AgCl / PHBV复合膜。热重分析(TGA)用于定量盐交换前后存在的NaCl量。发现在预洗涤和部分洗涤的NaCl / PHBV膜中的Na含量分别为43.60质量%和1.24质量%。酸消解AgCl / PBHV复合膜,并通过原子吸收光谱法(AAS)测定Na +和Ag +含量,发现分别为2.15和10.25 ppm。 XPS技术用于表征AgCl / PHBV复合膜的表面元素组成。 AgCl / PHBV薄膜的调查光谱显示,与主要由C 1s和O 1s峰组成的纯PHBV相比,出现了Ag 3d和Cl 2s峰。从AgCl / PHBV复合膜中释放银离子的动力学过程表明,在解吸的第一天,银离子的初始爆发量约为1.5 ppm,随后在释放期间,银离子以每天平均0.3 ppm的速率逐渐释放。两个星期的研究;测试了载有胶原蛋白的PHBV膜和AgCl / PHBV复合膜负载的Ag / BSA纳米颗粒对大肠杆菌,金黄色葡萄球菌和铜绿假单胞菌的抗菌效果。与可商购的庆大霉素和磺胺甲恶唑/甲氧苄啶相比,负载有Ag / BSA纳米颗粒的胶原蛋白固定的PHBV膜的菌落形成单位和光密度测量显示在低Ag / BSA纳米颗粒浓度(0.19和0.31 microg)下具有广泛的抗菌活性,后者有时表现出选择性的抗菌活性和高浓度(10微克和23.75 / 1.25微克/碟)的抗菌活性。另外,在改进的Kirby-Bauer圆盘扩散测定中发现AgCl / PHBV复合膜周围有明显的抑制区。光密度结果和菌落形成单位的测量结果表明,AgCl / PHBV复合膜具有广泛的杀菌活性。;接下来,我们评估了载有胶原蛋白的PHBV膜和AgCl / PHBV复合膜负载的Ag / BSA纳米颗粒对MC3T3-E1细胞的细胞毒性。相同浓度的两种膜均显示出广泛的抗菌活性。通过MTT分析,我们确定负载Ag / BSA纳米颗粒的胶原蛋白固定的PHBV膜显示极少(如果有),与组织培养聚苯乙烯相比,AgCl / PHBV复合膜对MC3T3-E1细胞具有细胞毒性作用;我们的研究结果提供了几种适当制备支架的制剂。在骨组织工程应用中,它可用作潜在的生物相容性和可生物降解的支架,用于预防细菌感染并促进细胞附着和增殖。

著录项

  • 作者

    Bakare, Rotimi Ayotunde.;

  • 作者单位

    Howard University.;

  • 授予单位 Howard University.;
  • 学科 Materials science.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号