首页> 外文学位 >Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization.
【24h】

Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization.

机译:先进的燃烧器反应堆,带有繁殖和燃烧的Thor毯,可提高经济性和资源利用率。

获取原文
获取原文并翻译 | 示例

摘要

This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the 200 Displacements per Atom (DPA) radiation damage constraint of presently verified cladding materials. The S&B core is designed to have an elongated seed (or "driver") to maximize the fraction of neutrons that radially leak into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Two high-performance S&B cores were designed to benefit from this unique synergism: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and fabrication capacity per unit of core power.;Nevertheless, these reference cores were designed to set upper bounds on the S&B core performance by using larger height and pressure drop than those of typical SFR design. A study was subsequently undertaken to quantify the tradeoff between S&B core design variables and the core performance. This study concludes that a viable S&B core can be designed without significant deviation from SFR core design practices. For example, the S&B core with 120cm active height will be comparable in volume, HM mass and specific power with the S-PRISM core and could fit within the S-PRISM reactor vessel. 43.1% of this core power will be generated by the once-through thorium blanket; the required capacity for reprocessing and remote fuel fabrication per unit of electricity generated will be approximately one fifth of that for a comparable ABR. The sodium void worth of this 120cm tall S&B core is significantly less positive than that of the reference ABR and the Doppler coefficient is only slightly smaller even though the seed uses a fertile-free fuel. The seed in the high transmutation core requires inert matrix fuel (TRU-40Zr) that has been successfully irradiated by the Fuel Cycle Research & Development program. An additional sensitivity analysis was later conducted to remove the bias introduced by the discrepancy between radiation damage constraints -- 200 DPA applied for S&B cores and fast fluence of 4x1023 n(>0.1MeV)/cm2 applied for ABR core design. Although the performance characteristics of the S&B cores are sensitive to the radiation damage constraint applied, the S&B cores offer very significant performance improvements relative to the conventional ABR core design when using identical constraint. (Abstract shortened by ProQuest.).
机译:这项研究评估了设计种子和毯子(S&B)钠冷快堆(SFR)的可行性,以利用径向掺or燃料的毯子产生相当大的核心功率,辐射radial子毯子在Breed-and-Burn(B&B)模式下运行不会超过当前验证的包层材料的“每原子200位移(DPA)”辐射损伤约束。 S&B堆芯设计为具有细长的种子(或“驱动器”),以最大化径向泄漏到亚临界层中的中子比例,并通过轴向泄漏减少中子损失。 S&B堆芯中的橡皮布可以有效利用泄漏的中子,从而提高了经济性和资源利用率。这项研究的特定目标是在不违反热液压和材料约束的情况下,使橡皮布可以产生的核心功率份额最大化。由于橡皮布燃料不需要进行远程燃料制造的后处理,因此橡皮布所产生的大部分电能将导致单位发电量的燃料循环成本降低。在低转化率(CR)种子与th提供燃料的B&B毯子之间发现了独特的协同作用。在几个好处中,这种协同作用使泄漏非常低的S&B堆芯即使在使用惰性基质燃料作为种子时也具有较小的正冷却剂空洞反应性系数和足够大的负多普勒系数。当使用被内部和外部or涂层包围的环形种子时,这种协同作用的好处会最大化。设计了两个高性能S&B核,以从这种独特的协同作用中受益:(1)超长循环核,循环长度约为7年; (2)高转化率堆芯,其中种子燃料的TRU CR为0.0。它的TRU转化率与CR为0.5的参考高级燃烧器反应堆(ABR)相当,and涂层可产生接近60%的核心功率。但是,每单位核心功率仅需要六分之一的再加工和制造能力。尽管如此,这些参考核心的设计是通过使用比典型SFR设计更大的高度和压降来设置S&B核心性能的上限。随后进行了一项研究,以量化S&B核心设计变量与核心绩效之间的权衡。这项研究得出的结论是,可以设计可行的S&B核心,而不会明显偏离SFR核心设计实践。例如,具有120cm有效高度的S&B堆芯的体积,重锤质量和比功率可与S-PRISM堆芯相媲美,并且可以装入S-PRISM反应堆容器中。一次通过的blanket涂层将产生43.1%的核心功率;每单位发电量所需的后处理和远程燃料制造能力将约为可比ABR的能力的五分之一。这个120厘米高的S&B核心的钠空位值比参考ABR的钠空值要低得多,即使种子使用的是无肥燃料,其多普勒系数也仅略小。高trans变核中的种子需要惰性基质燃料(TRU-40Zr),该燃料已通过“燃料循环研究与开发”计划成功地进行了辐照。后来进行了额外的灵敏度分析,以消除由辐射损伤约束之间的差异引起的偏差-S&B磁芯应用200 DPA和ABR磁芯设计应用4x1023 n(> 0.1MeV)/ cm2的快速通量。尽管S&B磁芯的性能特征对所施加的辐射损伤约束敏感,但与使用相同约束的常规ABR磁芯设计相比,S&B磁芯可提供非常显着的性能改进。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Zhang, Guanheng.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Nuclear engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号