首页> 外文期刊>Nuclear Technology >Advanced Burner Reactors with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization
【24h】

Advanced Burner Reactors with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

机译:先进的燃烧器反应堆,带有繁殖和燃烧的Thor毯,可改善经济性和资源利用率

获取原文
获取原文并翻译 | 示例
       

摘要

This paper assesses the feasibility of designing seed-and-blanket (S&B) sodium-cooled fast reactor (SFR) cores to generate a significant fraction of the core power from radial thorium-fueled blankets that operate in the breed-and-burn (B&B) mode. The radiation damage on the cladding material in both seed and blanket does not exceed the presently acceptable constraint of 200 displacements per atom (dpa). The S&B core is designed to have an elongated seed (or driver) to maximize the fraction of neutrons that radially leak into the subcritical B&B blanket and reduce the neutron loss via axial leakage. A specific objective of this study is to maximize the fraction of core power generated by the B&B blanket that is proportional to the neutron leakage rate from the seed to the blanket. Since the blanket feed fuel is very inexpensive and requires no reprocessing and remote fuel fabrication, a larger fraction of power from the blanket will result in a lower fuel cycle cost per unit of electricity generated by the SFR core. It is found possible to design the seed of the S&B core to have a lower transuranics (TRU) conversion ratio (CR) than a conventional advanced burner reactor (ABR) core without deteriorating core safety. This is due to the unique synergism between a low CR seed and the B&B thorium blanket. The benefits of the synergism are maximized when using an annular seed surrounded by inner and outer thorium blankets. Two high-performance S&B cores are designed to benefit from the annular seed concept: (1) an ultra-long-cycle core having a CR = 0.5 seed and a cycle length of ~7 effective full-power years (EFPYs) and (2) a high-transmutation core having a TRU CR of 0.0. The TRU transmutation rate of the latter core is comparable to that of the reference ABR with a CR of 0.5, and the thorium blanket can generate close to 60% of the core power. Because of the high blanket power fraction along with the high discharge burnup of the CR = 0 seed, the reprocessing capacity per unit of core power required by this S&B core is only approximately 1/6th that of the reference ABR core with a TRU CR of 0.5. Although the seed fuel CR is nearly zero, the burnup reactivity swing is low enough to enable a cycle length of more than 4 EFPYs. This is attributed to a combination of reactivity gain in the thorium blankets over the cycle and the relatively high heavy metal inventory. Moreover, despite the very low leakage, the S&B cores feature a less positive coolant reactivity coefficient and large enough negative Doppler coefficient even when using nonfertile fuel for the seed, because of the unique physics properties of the ~(233)U and Th in the thorium blankets. With the long cycles, the S&B SFR is expected to have a higher capacity factor, and therefore a lower cost of electricity, than conventional ABRs. The discharge burnup of the thorium blanket fuel is typically 70 MWd/kg such that the thorium fuel utilization is approximately 12 times that of natural uranium in light water reactors. A sensitivity study is subsequently undertaken to quantify the trade-off between the core performances and several design variables: amount of zirconium in the inert matrix seed fuel, active core height, coolant pressure drop, and radiation damage constraint. The effect of the criterion used for quantifying acceptable radiation damage is evaluated as well. It is concluded that a viable S&B core can be designed without significant deviation from typical SFR core design practices.
机译:本文评估了设计种子和毯子(S&B)钠冷快堆(SFR)堆芯的可行性,该堆芯可以通过在繁殖和燃烧(B&B)中运行的径向or燃料包层产生很大一部分堆芯功率)模式。籽晶和毯子中包层材料的辐射损伤均不超过目前可接受的每原子200位移(dpa)的限制。 S&B堆芯设计为具有细长的种子(或驱动器),以最大化径向泄漏到亚临界B&B覆盖层中的中子比例,并通过轴向泄漏减少中子损失。这项研究的一个特定目标是使B&B毯子所产生的核心能量的比例最大化,该比例与从种子到毯子的中子泄漏率成正比。由于橡皮布进料燃料非常便宜,并且不需要后处理和远程燃料制造,因此橡皮布所产生的大部分电能将导致SFR堆芯产生的每单位电能的燃料循环成本降低。发现可以将S&B堆芯的种子设计为具有比常规先进燃烧器反应堆(ABR)堆芯更低的超铀酸转化率(CR),而不会降低堆芯的安全性。这是由于低CR种子与B&B or毯之间的独特协同作用。当使用被内部和外部or涂层包围的环形种子时,可以最大程度地发挥协同作用。设计了两个高性能S&B磁芯,以受益于环形种子概念:(1)超长周期磁芯,CR = 0.5种子,周期长度约为7有效全功率年(EFPY),并且(2 )TRU CR为0.0的高变质核心。后一个核心的TRU trans变率与参考ABR的CR值为0.5,并且comparable毯可产生接近60%的核心功率。由于CR = 0种子的高覆盖功率分数以及高放电燃耗,因此此S&B内核所需的每单位内核功率的后处理能力仅为TRU CR为的参考ABR内核的约1/6。 0.5。尽管种子燃料CR几乎为零,但燃耗反应性摆幅足够低,可以使循环长度超过4 EFPY。这归因于整个循环中in毯的反应性增加和相对较高的重金属库存。此外,尽管泄漏极低,但由于种子中的〜(233)U和Th具有独特的物理性质,即使将非肥力燃料用作种子,S&B堆芯仍具有较低的正冷却剂反应性系数和足够大的负多普勒系数。 or毯。随着周期的延长,与常规ABR相比,S&B SFR有望具有更高的容量因子,从而降低电力成本。 blanket毯燃料的燃耗通常为70 MWd / kg,因此the燃料利用率约为轻水反应堆中天然铀的12倍。随后进行了敏感性研究,以量化核心性能与几个设计变量之间的权衡:惰性基质种子燃料中的锆含量,有效核心高度,冷却剂压降和辐射损伤约束。还评估了用于量化可接受的辐射损伤的标准的效果。结论是,可以设计可行的S&B核,而不会明显偏离典型的SFR核设计实践。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号