首页> 外文学位 >Amorphous and nanocrystalline phase formation in highly-driven aluminum-based binary alloys.
【24h】

Amorphous and nanocrystalline phase formation in highly-driven aluminum-based binary alloys.

机译:在高度驱动的铝基二元合金中形成非晶态和纳米晶相。

获取原文
获取原文并翻译 | 示例

摘要

Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid.;The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation.;The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 microm with a Peclet number of ~0.2, JH and TMK deviate from each other. This deviation indicates an adiabatic type solidification path where heat of fusion is reabsorbed. It is interesting that this particle size range is also consistent with the appearance of a microcellular growth. While no glass formation is observed within this system, the smallest size powders appear to consist of a mixture of nanocrystalline Si and Al.;Al-Sm alloys have been investigated within a composition range of 34 to 42 wt% Sm. Gas atomized powders of Al-Sm are investigated to explore the morphological and structural hierarchy that correlates with different degrees of departure from full equilibrium conditions. The resultant powders show a variety of structural selection with respect to amount of undercooling, with an amorphous structure appearing at the highest cooling rates. Because of the chaotic nature of gas atomization, Cu-block melt-spinning is used to produce a homogeneous amorphous structure. The as-quenched structure within Al-34 to 42 wt% Sm consists of nanocrystalline fcc-Al (on the order of 5 nm) embedded in an amorphous matrix. The nucleation density of fcc-Al after initial crystallization is on the order of 1022-1023 m-3, which is 105-106 orders of magnitude higher than what classical nucleation theory predicts. Detailed analysis of liquid and as-quenched structures using high energy synchrotron X-ray diffraction, high energy transmission electron microscopy, and atom probe tomography techniques revealed an Al-Sm network similar in appearance to a medium range order (MRO) structure. A model whereby these MRO clusters promote the observed high nucleation density of fcc-Al nanocrystals is proposed. The devitrification path was identified using high temperature, in-situ, high energy synchrotron X-ray diffraction techniques and the crystallization kinetics were described using an analytical Johnson-Mehl-Avrami (JMA) approach.
机译:自从快速凝固技术首次引入材料科学和技术领域以来,已经取得了显着进步。快速凝固技术的结果是开发了新型材料,例如非晶态合金和纳米结构材料。尽管这些进步在许多方面都是开创性的,但对于液体与快速凝固的固体之间存在的基本关系,还有许多尚待观察。;本论文的范围涉及大量的实验,分析和计算研究旨在增加对在远离平衡条件下发生的形态选择,相竞争和结构层次的整体理解。高压气体雾化和铜块熔融纺丝是本研究中应用的两种不同的快速凝固技术。研究主要集中在Al-Si和Al-Sm合金体系上。在远非平衡的条件下与铝形成合金时,硅和sa会产生不同但有利的勘探系统。主要区别之一在于它们各自的T0曲线的位置,这使Al-Si成为溶解度扩展的良好候选者,而Al-Sm中的T0直线下降则促进了玻璃的形成。使用扫描和透射电子显微镜检查组成在15wt%至50wt%范围内的Si。通过微结构图描述了通过检查不同尺寸等级的粉末观察到的非平衡分配和形态选择。基于Jackson-Hunt(JH)和Trivedi-Magnin-Kurz(TMK)模型,根据测得的共晶间距估算出粉末中的界面速度和过冷量,可以直接比较理论预测值。对于Peclet值为〜0.2的10微米平均粒径,JH和TMK彼此偏离。该偏差表示绝热型凝固路径,在该路径中吸收了熔化热。有趣的是,该粒径范围也与微细胞生长的外观一致。尽管在该系统中未观察到玻璃形成,但最小尺寸的粉末似乎由纳米晶Si和Al的混合物组成。已经研究了在34至42 wt%Sm的组成范围内的Al-Sm合金。研究了Al-Sm气体雾化粉末,以探索与完全平衡条件不同程度偏离相关的形态和结构层次。相对于过冷量,所得粉末显示出多种结构选择,其中非晶态结构以最高冷却速率出现。由于气体雾化的混乱性质,因此使用Cu块熔纺来生产均匀的非晶结构。 Al-34至42 wt%Sm内的淬火结构由嵌入非晶基质中的纳米晶fcc-Al(约5 nm)组成。初始结晶后,fcc-Al的成核密度约为1022-1023 m-3,比经典成核理论所预测的高105-106个数量级。使用高能同步加速器X射线衍射,高能透射电子显微镜和原子探针层析成像技术对液体和淬火后的结构进行了详细分析,发现Al-Sm网络的外观类似于中程级(MRO)结构。提出了一个模型,其中这些MRO团簇促进了fcc-Al纳米晶体的高成核密度。使用高温原位高能同步加速器X射线衍射技术确定失透路径,并使用Johnson-Mehl-Avrami(JMA)分析方法描述结晶动力学。

著录项

  • 作者

    Kalay, Yunus Eren.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Physics Condensed Matter.;Physics Atomic.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 224 p.
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;分子物理学、原子物理学;
  • 关键词

  • 入库时间 2022-08-17 11:38:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号