首页> 外文学位 >Formal Verification of Nonlinear Biological Systems.
【24h】

Formal Verification of Nonlinear Biological Systems.

机译:非线性生物系统的形式验证。

获取原文
获取原文并翻译 | 示例

摘要

Abstraction and composition have proved to be particularly useful in extending the reach of formal verification. Abstraction reduces the size of the system under investigation by neglecting details irrelevant to the properties of interest. Compositionality allows us to decompose large-scale system into smaller components and verify each component individually and reason about the verification of entire system from verified components. Together, these two techniques permit us to substitute a component with its equivalent abstraction such that the overall system retains the property of interest.;In this thesis, we first show that in the context of the Iyer et al. (IMW) 67-variable cardiac myocycte model, it is possible to replace the detailed 13-state probabilistic model of the sodium channel dynamics with a much simpler Hodgkin-Huxley (HH)-like two-state model, while only incurring a bounded approximation error. We then extend our technique to the 10-state model of the fast recovering calcium-independent potassium channel. The basis of our results is the construction of an approximate bisimulation between the HH-type abstraction and the corresponding detailed ion channel model, both of which are input-controlled (voltage in this case) CTMCs.;We then present BFComp, an automated framework based on Sum-Of-Squares (SOS) optimization and delta-decidability over the reals to compute Bisimulation Functions (BF). BF formalizes the notion of abstraction in dynamical systems by establishing approximate equivalence between the original system and its abstract equivalent. In addition, BFComp framework supports compositional reasoning. In this work, we are particularly interested in feedback composition, where output of one component is the input to another, and vice versa. By appealing to small-gain theorem of BFs, it can be shown that an abstract component with lower complexity can replace a detailed component in a feedback composition. Such substitution is safe in the sense that approximation error between the detailed and abstract component will not be amplified in the feedback composition. We will illustrate the utility of BFComp on a canonical cardiac-cell model, showing that the four-variable Markovian model for the slowly activating potassium current component can be safely replaced by a one-variable Hodgkin-Huxley-type approximation.;Finally, we present what we believe to be the first formal verification of a biologically realistic (nonlinear ODE) model of a neural circuit in a multicellular organism: Tap Withdrawal (TW) in C. Elegans, the common roundworm. TW is a reflexive behavior exhibited by C. Elegans in response to vibrating the surface on which it is moving; the neural circuit underlying this response is the subject of this investigation. Specially, we perform reach-tube-based reachability analysis on the TW circuit model of Wicks et al. (1996) to estimate key model parameters. Underlying our approach is the use of Fan and Mitra's recently developed technique for automatically computing local discrepancy (convergence and divergence rates) of general nonlinear systems.;The results we obtain are a significant extension of those of Wicks et al. (1996), who equip their model with fixed parameter values that reproduce the predominant TW response they observed experimentally in a population of 590 worms. In contrast, our techniques allow us to much more fully explore the model's parameter space, identifying in the process the parameter ranges responsible for the predominant behavior as well as the non-dominant ones. The verification framework we developed to conduct this analysis is model-agnostic, and can thus be re-used on other complex nonlinear systems.
机译:事实证明,抽象和组合对于扩展形式验证的范围特别有用。抽象通过忽略与目标属性无关的细节来减小正在研究的系统的大小。组合性使我们能够将大型系统分解为较小的组件,并分别验证每个组件,并从经过验证的组件中对整个系统进行验证。结合在一起,这两种技术使我们能够用等效的抽象来代替组件,从而使整个系统保留感兴趣的属性。在本论文中,我们首先在Iyer等人的上下文中证明了这一点。 (IMW)67变量心肌细胞模型,可以用更简单的类似Hodgkin-Huxley(HH)的二态模型代替钠通道动力学的详细13态概率模型,而仅产生有界近似错误。然后,我们将技术扩展到快速恢复独立于钙的钾通道的10状态模型。我们的结果的基础是在HH型抽象和相应的详细离子通道模型之间构建近似的双仿真模型,这两个模型都是输入控制的(在这种情况下为电压)CTMC。基于平方和(SOS)优化和实数的增量可判定性来计算双仿真函数(BF)。 BF通过在原始系统与其抽象等价物之间建立近似等价形式,将动力系统中的抽象概念形式化。另外,BFComp框架支持组合推理。在这项工作中,我们对反馈组合特别感兴趣,其中一个组件的输出是另一组件的输入,反之亦然。通过诉诸BF的小增益定理,可以证明具有较低复杂度的抽象成分可以代替反馈成分中的详细成分。从在反馈组成中不会放大详细和抽象成分之间的近似误差的意义上讲,这种替换是安全的。我们将说明BFComp在典型心脏细胞模型中的效用,表明缓慢激活的钾电流分量的四变量Markovian模型可以安全地由一变量Hodgkin-Huxley型逼近代替。目前,我们认为这是对多细胞生物中神经回路的生物现实(非线性ODE)模型的首次正式验证:常见round虫C. Elegans中的Tap Tapdrawal(TW)。 TW是C. Elegans对震动其移动的表面所表现出的反射行为。该反应背后的神经回路是本研究的主题。特别是,我们对Wicks等人的TW电路模型执行基于可达管的可达性分析。 (1996)估计关键模型参数。我们的方法的基础是使用Fan和Mitra最近开发的技术来自动计算一般非线性系统的局部差异(收敛和发散率)。我们获得的结果是Wicks等人的研究结果的重要扩展。 (1996年),他们为模型配备了固定的参数值,这些参数值可以再现他们在590个蠕虫种群中实验观察到的主要TW响应。相比之下,我们的技术使我们能够更全面地探索模型的参数空间,在此过程中确定负责主要行为和非主要行为的参数范围。我们开发的用于进行此分析的验证框架与模型无关,因此可以在其他复杂的非线性系统上重复使用。

著录项

  • 作者

    Islam, Md Ariful.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号