首页> 外文学位 >Nanoscale sensing with individual nitrogen-vacancy centers in diamond.
【24h】

Nanoscale sensing with individual nitrogen-vacancy centers in diamond.

机译:纳米级感测和钻石中的单个氮空位中心。

获取原文
获取原文并翻译 | 示例

摘要

Nitrogen-vacancy (NV) centers in diamond have recently emerged as a promising new system for quantum information and nanoscale sensing applications. They have long coherence times at room temperature and can be positioned in proximity to the diamond surface, enabling magnetometry with high spatial resolution and coherent coupling to other quantum systems. This thesis presents three experiments in which single NV centers were used to sense magnetic fields at the nanometer scale. In the first experiment, the coherent evolution of a single NV spin is coupled to the motion of a magnetized mechanical resonator tens of nanometers from the NV. Coherent manipulation of the spin is used to sense the driven and Brownian motion of the resonator under ambient conditions, with picometer-scale sensitivity to motion. Future applications of this technique include the detection of the zero-point fluctuations of a mechanical resonator, the realization of strong spin-phonon coupling at a single quantum level, and the implementation of quantum spin transducers. In the second experiment, a single NV electronic spin is used to measure the quantum dynamics of distant individual nuclear spins from within a surrounding spin bath. The demonstrated sensing technique dramatically increases the potential size of NV based quantum registers for quantum information applications, and provides a new method for nanoscale magnetic resonance imaging of single nuclear spins. In the third experiment, single NV electronic spins are used to probe magnetic Johnson noise in the vicinity of conductive silver films. Measurements of polycrystalline silver films over a range of distances (20-200 nanometers) and temperatures (10-300 Kelvin) are consistent with the classically expected behavior of the magnetic fluctuations. However, Johnson noise is found to be dramatically suppressed next to single-crystal films, indicative of a substantial deviation from Ohm's law arising from the ballistic motion of the electrons in the metal. These result demonstrate that our technique provides a general, non-invasive probe of local electron transport in samples of arbitrary size and dimensionality, which can be used to explore materials response to localized impurities and the interplay between transport, interactions and disorder at the nanoscale.
机译:钻石中的氮空位(NV)中心最近已成为一种有前途的新系统,适用于量子信息和纳米级传感应用。它们在室温下具有很长的相干时间,并且可以放置在钻石表面附近,从而实现具有高空间分辨率和与其他量子系统相干耦合的磁力测量。本文提出了三个实验,其中使用单个NV中心感应纳米级的磁场。在第一个实验中,单个NV自旋的相干演化与距NV数十纳米的磁化机械谐振器的运动耦合。自旋的相干操纵用于感测谐振器在环境条件下的被驱动运动和布朗运动,并且对运动具有皮米级的灵敏度。该技术的未来应用包括检测机械谐振器的零点波动,在单个量子级上实现强自旋声子耦合以及实现量子自旋换能器。在第二个实验中,使用单个NV电子自旋来测量来自周围自旋浴的远距离单个核自旋的量子动力学。证明的传感技术极大地增加了基于NV的量子寄存器在量子信息应用中的潜在尺寸,并为单核自旋的纳米级磁共振成像提供了一种新方法。在第三个实验中,使用单个NV电子自旋来探测导电银膜附近的磁性Johnson噪声。在一定距离(20-200纳米)和温度(10-300开尔文)范围内测量多晶银薄膜与经典的磁波动预期是一致的。然而,发现单晶膜旁边的约翰逊噪声得到了显着抑制,这表明由于金属中电子的弹道运动而引起的欧姆定律有很大偏离。这些结果表明,我们的技术为任意大小和尺寸的样品中的局部电子传输提供了一种通用的非侵入性探针,可用于探索材料对局部杂质的响应以及纳米级传输,相互作用和无序之间的相互作用。

著录项

  • 作者

    Kolkowitz, Shimon Jacob.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Atomic physics.;Quantum physics.;Optics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号