首页> 外文学位 >Dendrites Inhibition in Rechargeable Lithium Metal Batteries.
【24h】

Dendrites Inhibition in Rechargeable Lithium Metal Batteries.

机译:可充电锂金属电池中的枝晶抑制作用。

获取原文
获取原文并翻译 | 示例

摘要

The specific high energy and power capacities of rechargeable lithium metal (Li0) batteries are ideally suited to portable devices and are valuable as storage units for intermittent renewable energy sources. Lithium, the lightest and most electropositive metal, would be the optimal anode material for rechargeable batteries if it were not for the fact that such devices fail unexpectedly by short-circuiting via the dendrites that grow across electrodes upon recharging. This phenomenon poses a major safety issue because it triggers a series of adverse events that start with overheating, potentially followed by the thermal decomposition and ultimately the ignition of the organic solvents used in such devices.;In this thesis, we developed experimental platform for monitoring and quantifying the dendrite populations grown in a Li battery prototype upon charging under various conditions. We explored the effects of pulse charging in the kHz range and temperature on dendrite growth, and also on loss capacity into detached "dead" lithium particles. Simultaneously, we developed a computational framework for understanding the dynamics of dendrite propagation. The coarse-grained Monte Carlo model assisted us in the interpretation of pulsing experiments, whereas MD calculations provided insights into the mechanism of dendrites thermal relaxation. We also developed a computational framework for measuring the dead lithium crystals from the experimental images.
机译:可再充电锂金属(Li0)电池的特定高能量和功率容量非常适合便携式设备,并且作为间歇性可再生能源的存储单元非常有价值。锂是最轻和最正电的金属,如果不是这样的事实,即锂不会因充电时通过电极上生长的枝晶短路而意外失效,那么锂将成为可再充电电池的最佳阳极材料。这种现象构成了一个主要的安全问题,因为它引发了一系列始于过热的不良事件,并有可能继之以热分解,并最终点燃了此类设备中使用的有机溶剂。;在本文中,我们开发了用于监控的实验平台并量化在各种条件下充电后在锂电池原型中生长的枝晶数量。我们探索了在kHz范围和温度下脉冲充电对枝晶生长的影响,以及对分离的“死”锂颗粒的损耗容量的影响。同时,我们开发了一个计算框架,用于了解枝晶传播的动力学。粗粒度的蒙特卡洛模型帮助我们解释了脉冲实验,而MD计算提供了对枝晶热弛豫机理的见解。我们还开发了一种计算框架,用于从实验图像中测量死锂晶体。

著录项

  • 作者

    Aryanfar, Asghar.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Materials science.;Mechanical engineering.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号