首页> 外文学位 >Thermodynamics and kinetics of the CuCl(aq)/HCl(aq) electrolyzer for hydrogen production.
【24h】

Thermodynamics and kinetics of the CuCl(aq)/HCl(aq) electrolyzer for hydrogen production.

机译:用于制氢的CuCl(aq)/ HCl(aq)电解槽的热力学和动力学。

获取原文
获取原文并翻译 | 示例

摘要

The CuCl(aq)/HCl(aq) electrolyzer is an important component in the Cu-Cl hybrid thermochemical cycle. Here we intend to provide information on how this electrolytic cell impacts the cycle's efficiency and electric energy requirements. Through a better understanding the thermodynamics and kinetics of this electrochemical cell, the electric energy requirements needed for hydrogen production with this cycle can become available.;Chapter 1 focuses on the relationship between equilibrium thermodynamics of the electrochemical reactions and the cycle's efficiency. Using Gibbs energy minimization (GEM), thermodynamic speciation diagrams of CuCl(aq) and CuCl2(aq) were generated to provide insights into the electrochemically active species. Results from GEM were used to quantify the Gibbs energy, Enthalpy and entropy of the electrochemical reactions. Additionally, Gibbs energy values theoretically calculated were compared to those experimentally measured. Thermodynamic, voltage, current and overall efficiencies of the electrolyzer were quantified to include speciation effects and activity coefficients.;Chapter 2 explores the electrochemical kinetics of the positive electrode using a rotating disc electrode (RDE) and the effectiveness of catalyst application techniques from scanning electron microscopy (SEM) images and full cell polarization curves. With the RDE, the positive electrode overpotential-current density relationship was defined. It was found that electrochemical kinetic parameters could be obtained for the positive electrode reaction on different catalyst materials with electrochemical impedance spectroscopy (EIS) and polarization curves. On both platinum and glassy carbon surfaces, the positive electrode reaction was very fast relative to other electrochemical reactions. Furthermore, removing platinum completely from the positive electrode had little effect on the polarization curves obtained from the full cell, whereas improving spray application technique significantly improved the performance relative to the painting technique.;Chapter 3 investigates the effects of concentrated HCl(aq) on the electrochemical kinetics of the hydrogen evolution reaction. EIS and LSV were used to define kinetic parameters of the electrochemical reaction for polycrystalline platinum. It was found that the overpotential -- current density behavior of the reaction on platinum followed the generalized Butler-Volmer equation.;Chapter 4 presents a model to simulate the applied potential for the CuCl(aq)/HCl(aq) electrolyzer over a range of experimental conditions. The model presented here separates the potential contributions of the positive electrode, negative electrode and the membrane. Total applied potential was described using non-equilibrium thermodynamics, equilibrium thermodynamics and electrochemical kinetics. Using the information collected in Chapters 1-3 and some literature data, it was found that model simulations could match experimental data with only one adjustable parameter. Simulations of different values of active electrode area, ohmic resistance, and extent of CuCl(aq) conversion were performed. It was found that the extent of CuCl(aq) conversion and ohmic resistance, Rohm, strongly impacted the simulated Ecell value at high cell currents. Significant improvements to the electrolyzer performance could be obtained if Rohm was decreased relative to similar improvements in electrochemical kinetics or active electrode area.
机译:CuCl(aq)/ HCl(aq)电解槽是Cu-Cl杂化热化学循环中的重要组成部分。在这里,我们打算提供有关此电解池如何影响循环效率和电能需求的信息。通过更好地了解该电化学电池的热力学和动力学,可以得到在该循环中生产氢气所需的电能。第1章着重探讨电化学反应的平衡热力学与循环效率之间的关系。使用吉布斯能量最小化(GEM),生成了CuCl(aq)和CuCl2(aq)的热力学形态图,以提供对电化学活性物质的认识。 GEM的结果用于量化电化学反应的吉布斯能量,焓和熵。此外,将理论计算的吉布斯能量值与实验测量的能量值进行了比较。量化了电解槽的热力学,电压,电流和整体效率,以包括形态效应和活度系数。第二章探讨了使用旋转圆盘电极(RDE)的正极的电化学动力学以及扫描电子对催化剂施加技术的有效性显微镜(SEM)图像和全细胞极化曲线。利用RDE,定义了正极过电势-电流密度关系。通过电化学阻抗谱(EIS)和极化曲线,发现在不同催化剂材料上的正极反应可得到电化学动力学参数。相对于其他电化学反应,在铂和玻璃碳表面上,正极反应都非常快。此外,从正极完全去除铂对从全电池获得的极化曲线影响很小,而改进的喷涂技术相对于喷涂技术显着改善了性能。;第三章研究了浓HCl(aq)对析氢反应的电化学动力学。 EIS和LSV用于定义多晶铂电化学反应的动力学参数。发现铂上反应的超电势-电流密度行为遵循广义的Butler-Volmer方程。;第4章提供了一个模型,用于模拟在一定范围内CuCl(aq)/ HCl(aq)电解槽的施加电势实验条件。此处介绍的模型将正极,负极和膜的电位贡献分开。使用非平衡热力学,平衡热力学和电化学动力学描述了总施加电势。使用在第1-3章中收集的信息和一些文献数据,发现模型仿真可以仅使用一个可调整的参数来匹配实验数据。模拟了不同的有源电极面积,欧姆电阻和CuCl(aq)转化程度的值。发现在高电池电流下,CuCl(aq)的转化程度和欧姆电阻Rohm强烈影响了模拟的Ecell值。如果相对于电化学动力学或活性电极面积的类似改进降低了Rohm,则可以显着提高电解槽的性能。

著录项

  • 作者

    Hall, Derek M.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Chemical engineering.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 96 p.
  • 总页数 96
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号