首页> 外文学位 >Robustness and Thermophysical Properties of MOF-5: A Prototypical Hydrogen Storage Material.
【24h】

Robustness and Thermophysical Properties of MOF-5: A Prototypical Hydrogen Storage Material.

机译:MOF-5的稳健性和热物理性质:一种典型的储氢材料。

获取原文
获取原文并翻译 | 示例

摘要

Metal-organic frameworks (MOFs) are an emerging class of microporous, crystalline materials with potential applications in the capture, storage, and separation of gasses. Of the many known MOFs, the compound known as MOF-5 has attracted considerable attention due to its ability to store gaseous fuels at low pressure with high densities. However, low thermal conductivity and limited robustness upon exposure to water and other reactive species are two challenges which limit the application of MOF-5; similar issues plague several other MOFs. The focus of this dissertation is to understand and overcome these shortcomings through detailed experimental and computational characterization of the prototype compound, MOF-5. The insight provided by this study regarding the properties of MOFs will aid in the transition of these materials from lab bench to applications.;Improvements to the thermal conductivity of MOF-5 are demonstrated using densified pellets consisting of a physical mixture of MOF-5 and expanded natural graphite (ENG). The high-aspect ratio of ENG particles, combined with uni-axial compression, results in anisotropic microstructural and thermal transport properties in the pellets. Perpendicular to the pressing direction the thermal conductivity was observed to be two to four times higher than in the orthogonal direction. We further demonstrate that this anisotropy can be exploited to enhance conductivity along a preferred direction in the pellets by altering the pellet processing conditions. We conclude that the low thermal conductivity typical of MOFs can be improved using a judicious combination of second phase additions and processing techniques.;Regarding robustness, we first quantify experimentally the impact of humid air exposure on the properties of MOF-5 as a function of exposure time, humidity level, and morphology (i.e., powders vs. pellets). For humidity levels below 50% only minor degradation is observed for exposure times up to several hours. In contrast, irreversible degradation occurs in a matter of minutes for exposures above the 50% threshold. This transition in performance can be linked to the shape of the water isotherm, which shows a large increase in uptake at ~50% relative humidity. Densification into pellets can slow the degradation of MOF-5 significantly, and may present a pathway to enhance the stability of some MOFs.;We subsequently examined the thermodynamics and kinetics of water adsorption/insertion into MOF-5 using van der Waals-augmented Density Functional Theory calculations and transition state finding techniques. Adsorption and insertion energetics were evaluated as a function of water coverage while accounting for the full periodicity of the MOF-5 crystal structure, i.e., without resorting to cluster approximations or structure simplification. We find that incoming water molecules preferentially adsorb at adjacent sites on Zn-O clusters rather than filling widely separated low energy sites. Our calculations also suggest that the thermodynamics of MOF hydrolysis are coverage dependent: water insertion into the framework becomes exothermic (with a low, 0.17eV activation barrier) only after a sufficient number of H2O molecules are adsorbed on a Zn-O cluster. This observation is in good agreement with experimental measurements, which show that hydrolysis is slow at low water coverages and is preceded by an incubation period.;The third component in our study of MOF-5 robustness involved cyclic and static exposure to impure hydrogen gas. Five impurity gas mixtures were prepared by introducing low levels of selected contaminants (NH3, H2S, HCl, H2O, CO, CO2, CH4, O 2, N2, and He) to high-purity hydrogen gas. MOF-5 was exposed to these mixtures over hundreds of adsorption/desorption pressure cycles and for extended periods of static exposure lasting up to 1 week. Hydrogen chloride was the only impurity that yielded a measurable decrease in hydrogen storage capacity. Post-cycling and post-storage samples were analyzed using FTIR spectroscopy and x-ray diffraction. These analyses reveal slight changes in the spectra (compared to the pristine samples) only for those samples exposed to HCl and NH3 impurities.;In closing, we briefly examine hydrogen permeation into- and the internal structure of- MOF-5 pellets using neutron and x-ray imaging techniques (tomography and radiography). Neutron tomography reveals the 3-dimensional distribution of the ENG network inside MOF-5/ENG composite pellets. MicroCT allows for the characterization of density variations within MOF-5 pucks. In situ neutron radiography shows that hydrogen permeation is rapid in densified MOF-5 bodies.
机译:金属有机框架(MOF)是一类新兴的微孔晶体材料,在气体的捕获,存储和分离方面具有潜在的应用前景。在许多已知的MOF中,由于其能够在低压下以高密度存储气态燃料,因此被称为MOF-5的化合物引起了广泛的关注。但是,低导热系数和暴露于水及其他反应性物质后的坚固性有限,这是两个挑战,限制了MOF-5的应用。类似的问题困扰着其他几个财政部。本文的重点是通过对原型化合物MOF-5进行详细的实验和计算表征来理解和克服这些缺点。这项研究提供的关于MOFs特性的见解将有助于这些材料从实验室工作台过渡到应用场合。;通过使用由MOF-5和DPS物理混合物组成的致密颗粒,证明了MOF-5导热性的提高。膨胀天然石墨(ENG)。 ENG颗粒的高纵横比与单轴压缩相结合,导致了颗粒的各向异性组织和热传输性能。垂直于压制方向,观察到导热率比正交方向高两倍至四倍。我们进一步证明,可以通过改变粒料的加工条件来利用这种各向异性来提高粒料沿优选方向的电导率。我们得出结论,通过明智地结合第二相添加和加工技术,可以改善MOF的典型低导热性;关于稳健性,我们首先通过实验量化湿空气暴露对MOF-5性能的影响,作为MOF-5的函数。暴露时间,湿度水平和形态(即粉末与颗粒)。对于低于50%的湿度,在长达数小时的暴露时间内只能观察到轻微的降解。相反,对于高于50%阈值的曝光,几分钟之内就会发生不可逆的降解。性能的这种转变可以与等温线的形状相关,等温线表示在〜50%的相对湿度下吸收量大大增加。致密化成颗粒可以显着减慢MOF-5的降解,并可能提供增强某些MOF稳定性的途径。;我们随后使用范德华增强密度研究了水吸附/插入MOF-5的热力学和动力学。功能理论计算和过渡态发现技术。在考虑MOF-5晶体结构的全部周期性的同时,即在不求助于簇近似或结构简化的情况下,根据水覆盖率来评估吸附和插入能量学。我们发现,进入的水分子优先吸附在Zn-O团簇的相邻位置上,而不是填充广泛分离的低能量位置。我们的计算还表明,MOF水解的热力学取决于覆盖率:只有在足够数量的H2O分子被吸附在Zn-O团簇上之后,水插入框架中才会放热(具有低的0.17eV激活势垒)。该观察结果与实验测量结果非常吻合,实验测量结果表明,在低水覆盖率下水解速度很慢,并且有一个潜伏期。我们对MOF-5稳健性研究的第三部分涉及循环和静态暴露于不纯净的氢气中。通过向高纯度氢气中引入少量的选定污染物(NH3,H2S,HCl,H2O,CO,CO2,CH4,O 2,N2和He)来制备五种杂质气体混合物。 MOF-5在数百个吸附/解吸压力循环中暴露于这些混合物,并且持续了长达1周的长时间静态暴露。氯化氢是唯一可测量的储氢能力下降的杂质。使用FTIR光谱和X射线衍射分析了循环后和储存后的样品。这些分析表明,仅对于那些暴露于HCl和NH3杂质的样品,光谱(与原始样品相比)略有变化。;最后,我们使用中子和氢简要地考察了氢渗透入MOF-5颗粒及其内部结构的过程。 X射线成像技术(断层摄影和射线照相)。中子层析成像揭示了MOF-5 / ENG复合颗粒内部ENG网络的3维分布。 MicroCT可以表征MOF-5圆盘内的密度变化。原位中子射线照相术显示,致密的MOF-5体中氢的渗透迅速。

著录项

  • 作者

    Ming, Yang.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Materials science.;Condensed matter physics.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号