首页> 外文学位 >Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells.
【24h】

Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells.

机译:固体氧化物燃料电池氧化物阳极中的电极反应途径。

获取原文
获取原文并翻译 | 示例

摘要

Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties.;H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process.;For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching the electrolyte to change 3PB kinetics. Compared to Ni, Co doping activates the bulk oxygen more significantly, promoting the reaction at 2PB. The active surface reaction zone is found to be enlarged by the electrolyte with high oxygen activity (SSZ vs. YSZ) when charge transfer is one of the RDS. Due to the larger exchange current for charge transfer in 3PB with SSZ electrolyte, the adsorption gradient zone is broadened, leading to enhanced surface reaction kinetics. The potential application of such finding is demonstrated on SSZ/YSZ/SSZ sandwich, showing largely improved electrode performance, opening a wide door for the utilization of electrolytes that are too expensive, fragile or instable to be used before.;The bulk path way in 2PB reaction can be affected by overpotential in terms of local vacancy concentration, built-in electrical field and stability. It is proven that an uneven distribution of lattice oxygen is established under operation conditions with overpotential by both qualitative analysis and analytic solution. An electrostatic field force is present besides the concentration gradient in the anode lattice to control the motion of oxygen ions. Compared to the usual estimation based on chemical diffusion mechanism, the real deviation of ionic defects concentration under polarization from the equilibrium state near electrode/electrolyte interface is smaller with the built-in electrical field. The overpotential is demonstrated to be able to open up or shut down the bulk pathway depending on the ionic defects of electrodes. The analysis on the bulk pathway in terms of local charged species and various potentials provides new insight in anion diffusion and electrode stability.
机译:具有燃料柔韧性,抗粗化性,小化学膨胀性等优点的用于固体氧化物燃料电池(SOFC)的氧化物阳极已引起越来越多的关注。已经报道了一些钙钛矿结构阳极,例如(LaSr)(CrMn)O3,具有良好的性能。但是,在满足应用程序要求之前,需要进行更多的改进。了解氧化机理对于定向优化至关重要,但它仍处于研究的早期阶段。在这项研究中,从电化学活性的起源,速率决定步骤(RDS),反应区的扩展以及在工作条件下过电势对阳极氧化的影响,研究了掺杂氢气的YCrO 3与H2燃料的氧化物阳极反应机理。这些性能。发现YCs阳极上的H2氧化受到电荷转移和H表面扩散的限制。提出了一个模型来描述H2氧化的基本步骤。根据反应顺序结果,建议任何未将H纳入电荷转移步骤的模型都是无效的。 B位元素的性质主要决定了H 2的氧化动力学。 Ni显示出比Co更好的吸附能力。然而,这种氧化物阳极的H吸附能力不如Ni金属阳极。此外,电荷转移步骤与阳极中电子的活性直接相关;因此,可以通过增强电子活性来显着促进它。发现A部位Ca掺杂通过增加电子的活性来促进电荷转移过程而将极化电阻提高了约10倍。对于氧化物阳极中的活性区域,除了传统的三相边界(3PB),事实证明,当根据B位元素激活体晶格时,作为两相边界(2PB)的内部阳极表面也能够催化氧化H2燃料。通过切换电解质以改变3PB动力学来估算每个部分的贡献。与Ni相比,Co掺杂更显着地激活了整体氧,从而在2PB时促进了反应。当电荷转移是RDS之一时,发现活性表面反应区被具有高氧活度的电解质(SSZ对YSZ)扩大。由于用SSZ电解质在3PB中进行电荷转移时交换电流较大,因此吸附梯度区变宽,从而提高了表面反应动力学。这种发现的潜在应用已在SSZ / YSZ / SSZ三明治上得到了证明,显示出大大改善的电极性能,为使用以前太贵,易碎或不稳定的电解质打开了宽阔的大门。在局部空位浓度,内置电场和稳定性方面,过高电位会影响2PB反应。通过定性分析和解析解证明,在超电势条件下,晶格氧分布不均匀。除阳极晶格中的浓度梯度外,还存在静电场力,以控制氧离子的运动。与基于化学扩散机理的常规估计相比,在内置电场的作用下,极化条件下离子缺陷浓度与电极/电解质界面附近的平衡态的实际偏差较小。根据电极的离子缺陷,证明过电势能够打开或关闭体通道。根据局部带电物质和各种电势对本体途径的分析为阴离子扩散和电极稳定性提供了新的见识。

著录项

  • 作者

    Li, Wenyuan.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Materials science.;Mechanical engineering.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号