首页> 外文学位 >Formal methods paradigms for estimation and machine learning in dynamical systems.
【24h】

Formal methods paradigms for estimation and machine learning in dynamical systems.

机译:动力学系统中用于估计和机器学习的形式方法范式。

获取原文
获取原文并翻译 | 示例

摘要

Formal methods are widely used in engineering to determine whether a system exhibits a certain property (verification) or to design controllers that are guaranteed to drive the system to achieve a certain property (synthesis). Most existing techniques require a large amount of accurate information about the system in order to be successful. The methods presented in this work can operate with significantly less prior information. In the domain of formal synthesis for robotics, the assumptions of perfect sensing and perfect knowledge of system dynamics are unrealistic. To address this issue, we present control algorithms that use active estimation and reinforcement learning to mitigate the effects of uncertainty. In the domain of cyber-physical system analysis, we relax the assumption that the system model is known and identify system properties automatically from execution data.;First, we address the problem of planning the path of a robot under temporal logic constraints (e.g. "avoid obstacles and periodically visit a recharging station") while simultaneously minimizing the uncertainty about the state of an unknown feature of the environment (e.g. locations of fires after a natural disaster). We present synthesis algorithms and evaluate them via simulation and experiments with aerial robots. Second, we develop a new specification language for tasks that require gathering information about and interacting with a partially observable environment, e.g. ``Maintain localization error below a certain level while also avoiding obstacles.'' Third, we consider learning temporal logic properties of a dynamical system from a finite set of system outputs. For example, given maritime surveillance data we wish to find the specification that corresponds only to those vessels that are deemed law-abiding. Algorithms for performing off-line supervised and unsupervised learning and on-line supervised learning are presented. Finally, we consider the case in which we want to steer a system with unknown dynamics to satisfy a given temporal logic specification. We present a novel reinforcement learning paradigm to solve this problem. Our procedure gives ``partial credit'' for executions that almost satisfy the specification, which can lead to faster convergence rates and produce better solutions when the specification is not satisfiable.
机译:形式化方法在工程中被广泛使用,以确定系统是否表现出某种特性(验证)或设计控制器,以保证驱动系统达到某种特性(综合)。大多数现有技术都需要大量有关系统的准确信息才能成功。这项工作中介绍的方法可以使用更少的先验信息进行操作。在机器人技术的形式综合领域中,完美感测和系统动力学的完美知识的假设是不现实的。为了解决这个问题,我们提出了使用主动估计和强化学习来减轻不确定性影响的控制算法。在网络物理系统分析领域,我们放宽了系统模型已知的假设,并从执行数据中自动识别系统属性。;首先,我们解决了在时间逻辑约束下规划机器人路径的问题(例如“避免障碍物,并定期访问充电站”),同时将有关环境未知特征(例如自然灾害后的火灾地点)状态的不确定性降至最低。我们提出了合成算法,并通过航空机器人的仿真和实验对其进行了评估。其次,我们为需要收集有关部分可观察环境的信息并与之交互的任务的任务开发了一种新的规范语言。 “将定位误差保持在一定水平以下,同时也避免了障碍。”第三,我们考虑从一组有限的系统输出中学习动力系统的时间逻辑特性。例如,给定海上监视数据,我们希望找到仅与那些被认为是守法的船只相对应的规格。提出了用于执行离线监督学习和非监督学习以及在线监督学习的算法。最后,我们考虑一种情况,在这种情况下,我们想操纵一个动力学未知的系统,以满足给定的时间逻辑规范。我们提出了一种新颖的强化学习范式来解决这个问题。对于几乎满足规范的执行,我们的程序会给予``部分信誉'',这可能会导致更快的收敛速度,并在规范无法满足时提供更好的解决方案。

著录项

  • 作者

    Jones, Austin.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Systems science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号