首页> 外文学位 >Using truncated-matrix multipliers and squarers in high-performance DSP systems.
【24h】

Using truncated-matrix multipliers and squarers in high-performance DSP systems.

机译:在高性能DSP系统中使用截断矩阵乘法器和平方器。

获取原文
获取原文并翻译 | 示例

摘要

Digital-signal-processing (DSP) systems often rely on hardware accelerators and high-speed function interpolators to meet the throughput and power requirements of modern applications such as wireless communication, portable multimedia players, and high-performance graphics processing. Truncated-matrix multipliers and squarers are arithmetic units in which some of the least-significant columns of partial-product bits are not formed. Such units offer the trade-off of improved area, delay, and power, at the expense of computational accuracy. Since many DSP algorithms are multiply and/or square intensive, and can tolerate some additional computational error, truncated-matrix units are an attractive design option. In spite of this, little work is published on the system-level use and optimization of truncated-matrix multipliers or squarers in DSP systems.;This dissertation presents methods for using truncated-matrix multipliers and squarers in high-performance DSP hardware that allow area, delay, and power benefits to be achieved without compromising the quality of the system output due to error. Finite-impulse-response (FIR) filters, two-dimension discrete cosine transform and inverse discrete cosine transform (2-D DCT and IDCT) hardware accelerators, and function interpolators are studied. Unlike previous research, which only looks at the unit level, a system-level approach is taken to reduce the overall error of the system output. By taking a system-level approach, the output of the system can be improved significantly compared to only using unit-level techniques. System-level techniques including coefficient shifting, system-level constant correction, and error apportioning are developed.;Results show that significant reductions in area and power can be realized for each of these systems while maintaining acceptable error characteristics. FIR filters are shown to have signal-to-noise ratios and frequency responses nearly identical to filters using standard multipliers, while using truncated-matrix multipliers that require approximately 35% less area. DCT and IDCT hardware accelerators using truncated-matrix multipliers with up to 44% less area and 44% less power are shown to compress and decompress images that are indistinguishable from images processed using standard multipliers. The computational portion of quadratic function interpolators designed with +/-1 unit in the last place (ulp) accuracy are shown to require up to 34% less area and 25% less power when modified to use truncated-matrix multipliers and squarers, while maintaining +/-1 ulp accuracy. A thorough survey of existing techniques at the unit level is given, complete with detailed error analysis and synthesis estimates. Software tools are developed that perform fast, bit-accurate simulation and generate structural Verilog models for synthesis. These tools enable further research and conversion of existing designs to use truncated-matrix multipliers and squarers.
机译:数字信号处理(DSP)系统通常依靠硬件加速器和高速功能插值器来满足现代应用程序(例如无线通信,便携式多媒体播放器和高性能图形处理)的吞吐量和功率要求。截断矩阵乘法器和平方器是算术单元,其中未形成部分乘积位的最低有效列。这样的单元以改善的面积,延迟和功率为代价,以计算精度为代价。由于许多DSP算法是乘法和/或平方密集型的,并且可以容忍一些额外的计算误差,因此,截断矩阵单元是一种有吸引力的设计选择。尽管如此,关于在DSP系统中截断矩阵乘法器或平方器的系统级使用和优化的工作还很少发表。本论文提出了在高性能DSP硬件中使用截断矩阵乘法器和平方器的方法,该方法允许占用空间。在不因错误而影响系统输出质量的情况下,实现了延迟,功耗和功耗优势。研究了有限冲激响应(FIR)滤波器,二维离散余弦变换和逆离散余弦变换(2-D DCT和IDCT)硬件加速器以及函数插值器。与以前的研究仅着眼于单元级别的研究不同,系统级的方法可以减少系统输出的总体误差。与仅使用单元级技术相比,通过采用系统级方法,可以显着提高系统的输出。开发了包括系数平移,系统级常数校正和误差分配在内的系统级技术。结果表明,在保持可接受的误差特性的同时,每个系统都可以实现面积和功耗的显着降低。 FIR滤波器的信噪比和频率响应几乎与使用标准乘法器的滤波器相同,而使用截短矩阵乘法器则需要的面积减少约35%。使用截断矩阵乘法器的DCT和IDCT硬件加速器的面积减少了44%,功耗减少了44%,可以压缩和解压缩与使用标准乘法器处理后的图像没有区别的图像。最后修改为+/- 1单位的二次函数插值器的计算部分显示,修改为使用截断矩阵乘法器和平方器时,所需的面积减少了34%,功耗减少了25%,同时保持了+/- 1 ulp精度。给出了在单元级别对现有技术的全面调查,并附有详细的误差分析和综合估计。开发了执行快速,精确到位的仿真并生成用于综合的结构性Verilog模型的软件工具。这些工具可以对现有设计进行进一步的研究和转换,以使用截断矩阵乘法器和平方器。

著录项

  • 作者

    Walters, E. George, III.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 272 p.
  • 总页数 272
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:37:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号