首页> 外文学位 >Sparse grid-based modeling and control of biological systems.
【24h】

Sparse grid-based modeling and control of biological systems.

机译:基于稀疏网格的生物系统建模和控制。

获取原文
获取原文并翻译 | 示例

摘要

The goal of systems biology is to utilize quantitative, mathematical models in order to advance the understanding of complex biological processes as well as determine strategies to modify or control these processes. Achieving these goals could aid the development of novel disease interventions and therapy strategies. The major challenge that systems biology faces is uncertainty. Uncertainty arises from incomplete knowledge of the biological pathways, which are encoded in the mathematical equations of the model, and the dynamical rates at which the processes proceed, which are encoded in values of the model parameters. Knowledge is hampered by the fact that biological data is usually noisy, due to biological variation and experimental error, is often taken at sparse times points, and typically does not include measurements for every element of the system. A set of systems biology tools has been developed that appropriately deal with these sources of biological uncertainty, including experiment design, control, and robustness analysis algorithms. These algorithms rely on a thorough exploration of the global parameter space to characterize uncertainty, in terms of the data-consistent dynamics of the system. Such an examination of a global space is unusual, due to the high computational demand and the problem of the curse of dimensionality (where the computational effort is on the order of the problem's dimension). Therefore, this work presents a new implementation of sparse grids, which can be less dependent on dimension then other sampling techniques, in order to make this exploration computationally feasible, even in high dimensional spaces. In this work, a sequential experiment design algorithm helps reduce the uncertainty in the dynamics of a biological system. In addition, an adaptive predictive control algorithm determines the appropriate input to predictably alter the behavior of a biological system with uncertainty in its model parameter values. Furthermore, a robust open loop controller was designed to control biological systems with uncertainty in the model structure. These developed algorithms are broadly applicable in the field of systems biology: they place no restrictions on the type of model used, the amount of data or knowledge of the system already available, or the quality of data. As a result, it is expected that the algorithms can be widely applied to many systems biology applications. Examples for both intracellular and biomedical applications are demonstrated.
机译:系统生物学的目标是利用定量数学模型,以增进对复杂生物过程的理解,并确定修改或控制这些过程的策略。实现这些目标可以帮助开发新的疾病干预措施和治疗策略。系统生物学面临的主要挑战是不确定性。不确定性来自对生物学途径的不完全了解,这些知识被编码在模型的数学方程中,以及过程进行的动态速率被编码在模型参数的值中。由于生物学数据由于生物学变异和实验错误而通常嘈杂,通常在稀疏的时间点获取,并且通常不包括对系统每个元素的测量,因此知识受到阻碍。已经开发了一套系统生物学工具,可以适当地处理这些生物学不确定性的来源,包括实验设计,控制和鲁棒性分析算法。这些算法依赖于对全局参数空间的透彻探究,以根据系统的数据一致动态来表征不确定性。由于对计算的高需求和维数诅咒的问题(其中计算量在问题维数的数量级上),这种对全局空间的检查是不寻常的。因此,这项工作提出了一种稀疏网格的新实现方式,即使在高维空间中,稀疏网格也比其他采样技术对维的依赖程度更低,以使这种探索在计算上可行。在这项工作中,顺序实验设计算法有助于减少生物系统动力学的不确定性。另外,自适应预测控制算法确定适当的输入,以在模型参数值不确定的情况下可预测地更改生物系统的行为。此外,设计了鲁棒的开环控制器来控制模型结构不确定的生物系统。这些已开发的算法广泛应用于系统生物学领域:它们对所用模型的类型,数据量或现有系统知识或数据质量没有任何限制。结果,期望该算法可以广泛地应用于许多系统生物学应用。展示了细胞内和生物医学应用的实例。

著录项

  • 作者

    Donahue, Maia Mahoney.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Biomedical engineering.;Systematic biology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 258 p.
  • 总页数 258
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号