首页> 外文学位 >Nanosized Selenium: A Novel Platform Technology to Prevent Bacterial Infections.
【24h】

Nanosized Selenium: A Novel Platform Technology to Prevent Bacterial Infections.

机译:纳米硒:一种预防细菌感染的新型平台技术。

获取原文
获取原文并翻译 | 示例

摘要

As an important category of bacterial infections, healthcare-associated infections (HAIs) are considered an increasing threat to the safety and health of patients worldwide. HAIs lead to extended hospital stays, contribute to increased medical costs, and are a significant cause of morbidity and mortality. In the United States, infections encountered in the hospital or a health care facility affect more than 1.7 million patients, cost ;The most conventional and widely accepted method to fight against bacterial infections is using antibiotics. However, because of the widespread and sometimes inappropriate use of antibiotics, many strains of bacteria have rapidly developed antibiotic resistance. Those new, stronger bacteria pose serious, worldwide threats to public health and welfare. In 2014, the World Health Organization (WHO) reported antibiotic resistance as a global serious threat that is no longer a prediction for the future but is now reality. It has the potential to affect anyone, of any age, in any country.;The most effective strategy to prevent antibiotic resistance is minimizing the use of antibiotics. In recent years, nanomaterials have been investigated as one of the potential substitutes of antibiotics. As a result of their vastly increased ratio of surface area to volume, nanomaterials will likely exert a stronger interaction with bacteria which may affect bacterial growth and propagation. A major concern of most existing antibacterial nanomaterials, like silver nanoparticles, is their potential toxicity. But selenium is a non-metallic material and a required nutrition for the human body, which is recommended by the FDA at a 53 to 60 &mgr;g daily intake. Nanosized selenium is considered to be healthier and less toxic compared with many metal-based nanomaterials due to the generation of reactive oxygen species from metals, especially heavy metals.;Therefore, the objectives of this dissertation were to synthesize selenium nanoparticles, characterize nanosized selenium coatings on various materials, test the effectiveness of selenium coated materials at inhibiting bacteria growth and biofilm formation and investigate the mechanisms of how selenium nanoparticles inhibit bacteria growth. The nanosized selenium coated materials showed significant and continuous inhibitions to bacteria growth by up to 92.5% without using any antibiotics. The work performed in this dissertation presents a novel platform technology based on nanosized selenium to inhibit bacterial infections on various materials, which demonstrates the strong potential applications of nanosized selenium as an antibacterial agent in hospital environments and healthcare settings.
机译:作为细菌感染的重要类别,医疗保健相关感染(HAI)被认为对全世界患者的安全和健康构成了越来越大的威胁。 HAI导致住院时间延长,导致医疗费用增加,并且是发病率和死亡率的重要原因。在美国,在医院或医疗机构中遇到的感染影响了170万人,费用更高;对抗细菌感染的最常规和广泛接受的方法是使用抗生素。然而,由于抗生素的广泛使用,有时是不适当的使用,许多细菌菌株已迅速发展出对抗生素的耐药性。这些新的,更强大的细菌对全世界的公共卫生和福利构成了严重的威胁。 2014年,世界卫生组织(WHO)报告说,抗生素耐药性是全球性的严重威胁,不再是对未来的预测,而现在已成为现实。它有可能影响任何国家的任何年龄,任何年龄的人。预防抗生素耐药性的最有效策略是尽量减少使用抗生素。近年来,已经研究了纳米材料作为抗生素的潜在替代品之一。由于它们的表面积与体积之比大大增加,纳米材料将可能与细菌产生更强的相互作用,从而影响细菌的生长和繁殖。大多数现有的抗菌纳米材料(如银纳米颗粒)的主要问题是其潜在的毒性。但是硒是一种非金属材料,是人体必需的营养物质,FDA推荐每天摄入53至60毫克。由于金属,特别是重金属产生的活性氧,与许多金属基纳米材料相比,纳米硒被认为更健康,毒性更小。因此,本论文的目的是合成硒纳米颗粒,表征纳米硒涂层在各种材料上,测试硒包覆材料在抑制细菌生长和生物膜形成方面的有效性,并研究硒纳米颗粒如何抑制细菌生长的机理。纳米级硒包覆材料在不使用任何抗生素的情况下,对细菌的生长表现出显着且连续的抑制作用,抑制率高达92.5%。本论文的工作提出了一种基于纳米硒的新型平台技术,可以抑制多种材料上的细菌感染,证明了纳米硒作为抗菌剂在医院环境和医疗环境中的强大潜力。

著录项

  • 作者

    Wang, Qi.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Biomedical engineering.;Chemical engineering.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 235 p.
  • 总页数 235
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号