首页> 外文学位 >Bombardment of thin lithium films with energetic plasma flows.
【24h】

Bombardment of thin lithium films with energetic plasma flows.

机译:用高能等离子体流轰击薄锂薄膜。

获取原文
获取原文并翻译 | 示例

摘要

The Divertor Erosion and Vapor Shielding Experiment (DEVEX) has been constructed in the Center for Plasma-Material Interactions at the University of Illinois at Urbana-Champaign. It consists of a conical theta-pinch connected to a 60 kV, 36 muF capacitor bank which is switched with a rise time of 3.5 mus. This results in a peak current of 300 kA for a 30 kV charge on the capacitor bank. The resulting plasma is created and compressed under the theta-pinch coil and then expelled axially towards a target chamber due to the conical taper of the theta-coil. The plasma that reaches the target chamber is dense, 1021 m-3 and cool, 10--20 eV. For the purposes of this study, a thin stainless steel target, sputter coated with a lithium magnetron is the target/material of interest. Both computational [A. Hassanein, Fus. Eng. Des. 60: 527546 (2002)] and experimental [M.L. Apicella, et al., J. Nuc. Mater. 386--388:821823 (2009)] studies have shown that lithium, under fusion relevant plasma bombardment, maintains a much lower surface temperature than other plasma facing materials such as tungsten or carbon. This is believed clue to the strong evaporation and/or sputtering of lithium under these conditions. Subsequently a vapor cloud is formed in front of the plasma-facing surface. The lithium vapor interacts with the incident plasma stream absorbing a fraction of the incident plasma energy via the lithium-plasma interactions.;Here, we present experimental verification of substantially reduced target surface temperature with the use of thin lithium films on surface of the target as compared to a bare target. Furthermore, optical measurements are made to determine the density and temperature of the lithium vapor cloud as it expands away from the target surface. A collisional-radiative model for both neutrals and singly ionized lithium is used to model the lithium vapor and is found to correlate well with the optical measurements. The vapor cloud electron temperature is found to vary from 2--3 eV with peak heating occurring 3--5 mm away from the target. While the lithium neutral density is found to fall off exponentially from the surface, the lithium ion density is peaked 5--10 mm away from the target. This suggests an ionization front at this distance from the target where the energy from the incident plasma is primarily absorbed by the lithium vapor. It is estimated that the primary mechanisms for energy deposition into the lithium vapor are due to primary and secondary ionizations of the lithium as well as electron-lithium scattering. The energy absorbed by these processes correlates well with the energy reduction found to the target surface when a lithium coating is present.
机译:伊利诺伊大学香槟分校伊利诺伊大学等离子体与材料相互作用中心已建立了分流器侵蚀和蒸汽屏蔽实验(DEVEX)。它由一个与60 kV,36μF电容器组相连的锥形theta管组成,该电容器组以3.5 mus的上升时间进行开关。对于电容器组上的30 kV充电,这会导致300 kA的峰值电流。产生的等离子体在theθ-pinch线圈下产生并压缩,然后由于theta-coil的锥形锥度而朝着目标腔室轴向排出。到达靶室的等离子体密度为1021 m-3,冷态为10--20 eV。出于本研究的目的,用锂磁控管溅射涂层的薄不锈钢靶是目标靶/材料。两者都计算[A.哈桑,富斯。 。德斯60:527546(2002)]和实验性[M.L. Apicella等,J。Nuc。母校386--388:821823(2009)]研究表明,在与熔融相关的等离子体轰击下,锂的表面温度比其他面对等离子体的材料(例如钨或碳)要低得多。据信这是在这些条件下锂强烈蒸发和/或溅射的线索。随后,在面向等离子体的表面的前面形成蒸气云。锂蒸气与入射等离子体流相互作用,通过锂-等离子体相互作用吸收一部分入射等离子体能量。在这里,我们通过使用靶表面上的锂薄膜作为目标,对目标表面温度大大降低的实验进行了验证。比起一个纯粹的目标。此外,进行光学测量以确定锂蒸气云在远离目标表面扩展时的密度和温度。中性锂和单离子化锂的碰撞辐射模型用于模拟锂蒸气,并发现其与光学测量具有很好的相关性。发现蒸气云电子温度在2--3 eV之间变化,并且在距靶标3--5 mm处出现峰值加热。尽管发现锂中性密度从表面呈指数下降,但锂离子密度在距目标5至-10毫米处达到峰值。这表明在距靶材此距离处的电离前沿,在该距离处入射等离子体的能量主要被锂蒸气吸收。据估计,能量沉积到锂蒸气中的主要机理是由于锂的一次和二次电离以及电子-锂散射。当存在锂涂层时,这些过程吸收的能量与目标表面发现的能量减少密切相关。

著录项

  • 作者

    Gray, Travis Kelly.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Nuclear.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号