首页> 外文学位 >Influence of iron speciation on redox cycling and reactivity with persistent organic contaminants.
【24h】

Influence of iron speciation on redox cycling and reactivity with persistent organic contaminants.

机译:铁形态对氧化还原循环和与持久性有机污染物的反应性的影响。

获取原文
获取原文并翻译 | 示例

摘要

Although a number of past studies have been aimed at characterizing iron's redox properties in aqueous systems and its contribution to natural attenuation processes of groundwater contaminants, many questions remain. It is especially important to understand the molecular properties that control the reactivity of both FeII and FeIII with oxidizing and reducing agents, respectively. Unfortunately, most studies to date have focused on iron reactions in heterogeneous systems where molecular-level understanding of the reacting Fe species is limited.;In this study, FeII/FeIII complexes with low molecular weight organic ligands were used as surrogate models for studying iron-mediated redox processes. Initially, the redox reactivity of Fe II-organic ligand complexes with nitro-organic explosives was investigated. Ligand-screening experiments demonstrate that organic ligands containing catechol, thiol, and hydroxamate functional groups form FeII-complexes capable of rapidly reducing both N-heterocyclic nitramine explosives and monosubstituted nitrobenzenes. Detailed kinetic investigations show that the reactivity of FeII-organic complexes is significantly dependent on solution conditions (e.g., pH and [FeII]/[organic ligand] ratios). Observed reaction rate constants for contaminant reduction measured in batch reactions (kobs, s-1 ) increase with ligand concentration and pH when FeII concentration is fixed. Correlation analysis reveals that a single Fe II species typically dominates overall FeII reactivity with target compounds (FeL26- FeHL 0, and FeL3- for tiron, DFOB, and acetohydroxamic acid, respectively; L=ligand). These species share a common characteristic in that they possess the lowest standard reduction potentials [EH0(FeIII/FeII)] among possible FeII complexes with each ligand. For nitroaromatic contaminants, linear free energy relationships (LFERs) are observed between species-specific second-order rate constants (ki; M-1 s-1) and reduction potentials of the FeIII/FeII redox couple, E H0(FeIII/FeII), and the nitroaromatic compound, EH1' (ArNO2). Kinetic studies indicate that some FeII-organic complexes lose their apparent reactivity with contaminants over time, For FeII-hydroxamate complexes, loss of FeII reactivity results from FeII oxidation coupled with reduction of hydroxamate Lewis base groups. The reduction and redox cycling of aqueous FeIII complexes with the model siderophore ligand DFOB (desferrioxamine B) in solutions containing a biogenic reducing agent, flavin mononucleotide (FMN), was also investigated. Results of kinetic studies show that FeIII-DFOB complexes are reduced to the corresponding FeII complexes by the fully reduced hydroquinone form of FMN (FMNHQ) over a wide pH range. Reaction rates are strongly dependent on pH and FMNHQ concentration. The observed rate constants for the forward FeIII reduction rate (kf,obs, min-1) increase with increasing FMNHQ concentration and decreasing pH, the latter trend being opposite to the trend for FeII-DFOB reacting with nitroaromatic contaminants. At higher pH conditions, incomplete Fe III reduction is also observed because two reverse processes re-oxidize FeII in the experimental system, autodecomposition of Fe II-DFOB complexes (FeII oxidation coupled with hydroxamate ligand reduction) and reaction of FeII-DFOB with the fully oxidized flavin mononucleotide product (FMNOX). Although no significant net reduction of FeIII-DFOB can be measured at pH 7, formation of ligand autodecomposition products is observed, indirectly indicating that FeIII-DFOB reduction is occurring followed by autodecomposition of some portion of the resulting FeII-DFOB complexes. Steady state [FeII]/[FeIII] ratios observed at different pH conditions are consistent with both kinetic and equilibrium models developed in this study. Quantitative comparison between kinetic trends and changing Fe speciation reveals that reduced and oxidized FMN species react predominantly with diprotonated FeIII- and FeII-DFOB complexes, respectively, where one of the hydroxamate groups is protonated and open coordination positions are available on the central Fe ions. This finding suggests that formation of ternary complex (FMN-Fe-DFOB) formation may be facilitating inner-sphere electron transfers between the flavin and metal center.
机译:尽管过去的许多研究旨在表征水系统中铁的氧化还原特性及其对地下水污染物自然衰减过程的贡献,但仍然存在许多问题。理解控制FeII和FeIII分别与氧化剂和还原剂反应的分子性质特别重要。不幸的是,迄今为止,大多数研究都集中在异质系统中的铁反应上,在该系统中,对反应的Fe物种的分子水平了解有限。;在本研究中,具有低分子量有机配体的FeII / FeIII配合物用作研究铁的替代模型介导的氧化还原过程。最初,研究了Fe II有机配体与硝基有机炸药的氧化还原反应性。配体筛选实验表明,含有邻苯二酚,硫醇和异羟肟酸酯官能团的有机配体形成了能够快速还原N杂环硝胺炸药和单取代硝基苯的FeII复合物。详细的动力学研究表明,FeII-有机配合物的反应性显着取决于溶液条件(例如,pH和[FeII] / [有机配体]之比)。当FeII浓度固定时,分批反应(kobs,s-1)中测得的观察到的反应速率常数随配体浓度和pH值的增加而增加。相关分析表明,单个Fe II物种通常在与目标化合物的整体FeII反应性中占主导地位(对于铁,DFOB和乙酰氧肟酸,分别为FeL26-FeHL 0和FeL3-; L =配体)。这些物质具有一个共同的特征,即它们在具有每种配体的可能的FeII配合物中具有最低的标准还原电位[EH0(FeIII / FeII)]。对于硝基芳香族污染物,在物种特定的二级速率常数(ki; M-1 s-1)与FeIII / FeII氧化还原对E H0(FeIII / FeII)的还原电位之间观察到线性自由能关系(LFER) ,以及硝基芳香化合物EH1'(ArNO2)。动力学研究表明,随着时间的流逝,某些FeII-有机配合物会失去与污染物的表观反应性。对于FeII-异羟肟酸酯配合物,FeII反应性的丧失是由于FeII氧化和异羟肟酸酯Lewis基团的还原所致。还研究了含有模型铁配体DFOB(去铁胺B)的FeIII水溶液在含有生物还原剂黄素单核苷酸(FMN)的溶液中的还原和氧化还原循环。动力学研究结果表明,FeIII-DFOB配合物在很宽的pH范围内,通过FMN(FMNHQ)的完全还原对苯二酚形式被还原为相应的FeII配合物。反应速率在很大程度上取决于pH和FMNHQ浓度。 FeIII的正向还原速率(kf,obs,min-1)的观察到的速率常数随着FMNHQ浓度的增加和pH值的降低而增加,后者的趋势与FeII-DFOB与硝基芳族污染物反应的趋势相反。在较高pH的条件下,还观察到Fe III还原不完全,因为在实验系统中有两个反向过程会重新氧化FeII,即Fe II-DFOB配合物的自动分解(FeII氧化与异羟肟酸酯配体的还原反应)以及FeII-DFOB与完全反应。氧化黄素单核苷酸产物(FMNOX)。尽管在pH 7下无法测量到FeIII-DFOB的明显净还原,但观察到配体自分解产物的形成,这间接表明FeIII-DFOB的还原正在发生,然后部分分解所得的FeII-DFOB复合物。在不同pH条件下观察到的稳态[FeII] / [FeIII]比率与本研究开发的动力学和平衡模型均一致。动力学趋势和变化的铁形态之间的定量比较表明,还原和氧化的FMN物种分别主要与双质子化的FeIII-和FeII-DFOB络合物反应,其中异羟肟酸酯基团被质子化,并且中心Fe离子上存在开放的配位位置。这一发现表明三元络合物(FMN-Fe-DFOB)的形成可能促进黄素和金属中心之间的内球电子转移。

著录项

  • 作者

    Kim, Dongwook.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号