首页> 外文学位 >Structural and functional characterization of the outer mitochondria membrane protein: Voltage-dependent anion channel 1.
【24h】

Structural and functional characterization of the outer mitochondria membrane protein: Voltage-dependent anion channel 1.

机译:线粒体外膜蛋白的结构和功能表征:电压依赖性阴离子通道1。

获取原文
获取原文并翻译 | 示例

摘要

All eukaryotic cells require an efficient exchange of metabolites between the mitochondria and the rest of the cell. This exchange is mediated by the most abundant protein in the outer mitochondrial membrane, the Voltage-Dependent Anion Channel (VDAC), which serves as the primary pathway for the exchange of ions and metabolites between the cytoplasm and the inter-membrane space. Additionally, VDAC acts as a scaffold for proteins that modulate mitochondrial permeability and has been implicated in mitochondria-dependent cell death. Because of its critical role in mitochondrial biology, the primary objective of my Ph.D. was to obtain the crystal structure of VDAC as a first step to understanding its gating mechanism, in vivo regulation and interaction with other proteins.;X-ray crystal structures of membrane proteins are notoriously difficult to obtain. To emphasize this point, membrane proteins represent ∼30% of all proteins in each of the sequenced genomes, yet comprise less than 1% of all deposited structures in the Protein Data Bank. The reason for this discrepancy stems from the hydrophobic nature of membrane proteins, which reside in phospholipids bilayers, making them difficult to express, purify and crystallize.;To overcome these challenges associated with membrane protein crystallography, the first step was to obtain "crystallization-grade" protein that was pure, homogeneous, functional, and in sufficient quantities to set up crystallization trials. Expression, refolding and purification protocols were optimized until murine VDAC1 (mVDAC1) protein having the above properties was obtained. Purified mVDAC1 protein was extensively characterized using biochemical and biophysical studies to ensure that its identity, fold and functional properties are the same as the native protein.;The next important challenge was to obtain crystals of purified mVDAC1 protein. When crystallization using the traditional detergent-based approach did not succeed in producing high quality crystals, the bicelle method was employed and upon optimization, resulted in mVDAC1 crystals that diffracted to 2.3A resolution. In contrast to detergent micelles, bicelles are small bilayer-like discs that more closely mimic the native lipid environment. As a result, the structure we obtained likely represents that of the endogenous channel.;The final critical challenge associated with membrane protein crystallography is the phase problem. Since all other methods to determine mVDAC1 phases failed, a novel method, cysteine scanning mutagenesis, was successfully used. This method, which has also been used for LacY and vSGLT, involves using an engineered cysteine to incorporate a single mercury atom.;The mVDAC1 structure presented here represents the first high-resolution crystal structure of a eukaryotic beta-barrel membrane protein. Our findings report a detailed high-resolution structure of a new class of beta-barrel membrane proteins formed by a 19 stranded beta-sheet. The N-terminus is located inside the barrel and forms an alpha-helix halfway down the pore resulting in a partial narrowing at the center. This orientation of the helix is ideally suited to gate metabolite flux through the channel. In addition to providing concise structural details that can aid drug design, the high-resolution structure has lead to new hypothesis regarding the gating mechanisms for metabolites and ions passing through this channel providing critical information for our understanding of VDAC's role in mitochondrial physiology.
机译:所有的真核细胞都需要线粒体与其余细胞之间有效地交换代谢产物。这种交换是由线粒体外膜中最丰富的蛋白质介导的,即电压依赖性阴离子通道(VDAC),它是细胞质与膜间空间之间离子和代谢物交换的主要途径。另外,VDAC充当调节线粒体通透性的蛋白质的支架,并与线粒体依赖性细胞死亡有关。由于其在线粒体生物学中的关键作用,我的博士学位的主要目标是获得VDAC的晶体结构是了解其门控机制,体内调控以及与其他蛋白质相互作用的第一步。众所周知,膜蛋白的X射线晶体结构很难获得。为了强调这一点,膜蛋白在每个测序的基因组中约占所有蛋白质的30%,但在蛋白质数据库中占不到所有沉积结构的1%。产生这种差异的原因是由于膜蛋白的疏水性,该膜蛋白位于磷脂双层中,使其难以表达,纯化和结晶。为了克服与膜蛋白结晶学相关的挑战,第一步是获得“结晶- “”级纯净,均质,功能齐全且足以进行结晶试验的“级”蛋白质。优化表达,重折叠和纯化方案,直到获得具有上述特性的鼠VDAC1(mVDAC1)蛋白。使用生化和生物物理研究对纯化的mVDAC1蛋白进行了广泛表征,以确保其身份,折叠和功能特性与天然蛋白相同。;下一个重要的挑战是获得纯化的mVDAC1蛋白的晶体。当使用传统的基于去污剂的方法进行结晶无法成功生产出高质量的晶体时,便采用了比塞尔法,并在进行优化后产生了衍射至2.3A分辨率的mVDAC1晶体。与去污剂胶束相反,二元胞是较小的双层状碟片,可更紧密地模仿天然脂质环境。结果,我们获得的结构可能代表了内源通道的结构。与膜蛋白晶体学相关的最终关键挑战是相问题。由于确定mVDAC1相的所有其他方法均失败,因此成功使用了半胱氨酸扫描诱变这一新方法。该方法也已用于LacY和vSGLT,涉及使用工程化的半胱氨酸掺入单个汞原子。这里显示的mVDAC1结构代表了真核β-桶形膜蛋白的第一个高分辨率晶体结构。我们的发现报告了由19链β-折叠形成的新型β-桶形膜蛋白的详细高分辨率结构。 N端位于机筒内部,并在孔的中途形成一个α螺旋,导致其中心部分变窄。螺旋线的这种方向非常适合于控制通过通道的代谢产物通量。除了提供有助于药物设计的简洁的结构细节外,高分辨率结构还导致了关于通过该通道的代谢物和离子的门控机制的新假说,为我们了解VDAC在线粒体生理中的作用提供了关键信息。

著录项

  • 作者

    Ujwal, Rachna.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Biology Molecular.;Biology Physiology.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号