首页> 外文学位 >Bioenergy systems in Canada: Towards energy security and climate change solutions.
【24h】

Bioenergy systems in Canada: Towards energy security and climate change solutions.

机译:加拿大的生物能源系统:迈向能源安全和气候变化解决方案。

获取原文
获取原文并翻译 | 示例

摘要

he energy security and climate change risks of fossil fuel consumption have stimulated interest in developing renewable energy sources. Canada's vast biomass potential is an attractive local resource but high transportation costs are a barrier to implementation. This study assesses how transformative systems can enable large-scale bioenergy production through integration with existing transportation corridors and fossil fuel infrastructure. Potential bioenergy corridors include the network of natural gas pipelines and the Great Lakes St. Lawrence Seaway (GLSLS).;Sustainable lignocellulosic biomass production integrated with traditional food and fibre production was assumed to occur on 196 Mha of land within 100 km of pipelines. Conservative (81 Mt of dry biomass per year) and aggressive (209 Mt) scenarios were investigated for converting biomass to synthetic natural gas (SNG) via gasification, methanation, and upgrading, yielding enough pipeline-quality gas to meet 20% to 60% of Canada's current needs. A systems analysis approach was used to calculate bioSNG life-cycle emissions of 15 to 18 kgCO 2e GJ-1, compared to 68 or 87 for conventional or liquefied natural gas, respectively. Production costs ranged from ;The biomass potential on 125 Mha of land area within 100 km of the Canadian portion of the GLSLS and railway lines ranged from 36 to 80 Mt(dry) per year, which was enough to displace coal-fired power in Ontario plus produce 1.6 to 11 billion L of green diesel that could offset 14% to 96% of fossil diesel in GLSLS provinces. Life-cycle emissions ranged from 110 to 130 gCO2 e kWh-1 for biopower (compared to 1030 for coal) and 20 to 22 kgCO2e GJ-1 for green diesel (compared to 84 for conventional diesel). Cost estimates ranged from
机译:矿物燃料消耗的能源安全和气候变化风险激发了人们对开发可再生能源的兴趣。加拿大巨大的生物质潜力是一种有吸引力的本地资源,但高昂的运输成本是实施的障碍。这项研究评估了转型系统如何通过与现有运输走廊和化石燃料基础设施的整合来实现大规模生物能源生产。潜在的生物能源走廊包括天然气管道网和大湖区圣劳伦斯海道(GLSLS)。假定可持续的木质纤维素生物量生产与传统食品和纤维生产相结合,发生在距离管道100公里以内的196 Mha土地上。为了通过气化,甲烷化和提质将生物质转化为合成天然气(SNG),研究了保守性(每年81 Mt的干燥生物质)和激进性(209 Mt)的方案,产生了足以满足20%至60%的管道质量的天然气加拿大当前的需求。系统分析方法用于计算15至18 kgCO 2e GJ-1的bioSNG生命周期排放,而常规或液化天然气分别为68或87。生产成本介于;在距GLSLS加拿大部分100公里以内的125 Mha土地面积上的生物质潜力和铁路每年从36到80 Mt(干)不等,足以取代安大略省的燃煤发电再加上生产1.6至110亿升绿色柴油,可以抵消GLSLS省14%至96%的化石柴油。生物能的生命周期排放量为110至130 gCO2 e kWh-1(煤炭为1030),绿色柴油的生命周期排放量为20至22 kgCO2 e GJ-1(常规柴油为84)。成本估算范围从

著录项

  • 作者

    Hacatoglu, Kevork.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Environmental Sciences.;Energy.
  • 学位 M.E.S.
  • 年度 2009
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境科学基础理论;能源与动力工程;
  • 关键词

  • 入库时间 2022-08-17 11:37:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号