首页> 外文学位 >DNA glycosylases remove oxidized base damages from G-quadruplex DNA structures.
【24h】

DNA glycosylases remove oxidized base damages from G-quadruplex DNA structures.

机译:DNA糖基化酶可消除G-四链体DNA结构的氧化碱基损伤。

获取原文
获取原文并翻译 | 示例

摘要

The G-quadruplex DNA is a four-stranded DNA structure that is highly susceptible to oxidation due to its G-rich sequence and its structure. Oxidative DNA base damages can be mutagenic or lethal to cells if they are left unrepaired. The base excision repair (BER) pathway is the predominant pathway for repair of oxidized DNA bases. DNA glycosylases are the first enzymes in BER and are responsible for removing base lesions from DNA. How DNA glycosylases remove base lesions from duplex and single-stranded DNA has been intensively studied, while how they act on G-quadruplex DNA remains to be explored.;In Chapter II of this dissertation, we studied the glycosylase activity of the five mammalian DNA glycosylases (OGG1, NTH1, NEIL1, NEIL2 and mouse Neil3) on G-quadruplex DNA formed by telomere sequences that contain a single base lesion. We found that telomeric sequences that contain thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh) or spiroiminodihydantoin (Sp) all formed the basket form of an antiparallel G-quadruplex DNA structure in Na+ solution. We also showed that no glycosylase was able to remove 8-oxoG from quadruplex DNA, while its further oxidation products, Sp and Gh, were good substrates for mNeil3 and NEIL1 in quadruplex DNA. In addition, mNeil3 is the only enzyme that removes Tg from quadruplex DNA and the glycosylase strongly prefers Tg in the telomere sequence context in both single-stranded and double-stranded DNA.;In Chapter III, we extended our study to telomeric G-quadruplex DNA in K+ solution and we also studied quadruplex DNA formed by promoter sequences. We found that 8-oxoG, Gh and Sp reduce the thermostability and alter the folding of telomeric quadruplex DNA in a location-dependent manner. Also, the NEIL1 and NEIL3 DNA glycosylases are able to remove hydantoin lesions but none of the glycosylases, including OGG1, are able to remove 8-oxoG from telomeric quadruplex DNA in K+ solution. Interestingly, NEIL1 or NEIL3 do not efficiently remove hydantoin lesions at the site that is most prone to oxidation in quadruplex DNA. However, hydantoin lesions at the same site in quadruplex DNA are removed much more rapidly by NEIL1, NEIL2 and NEIL3, when an extra telomere TTAGGG repeat is added to the commonly studied four-repeat quadruplex DNA to make it a five-repeat telomere quadruplex DNA. We also show that APE1 cleaves furan in selected positions in Na +-coordinated telomeric quadruplex DNA structures. We use promoter sequences of the VEGF and c-MYC genes as models to study promoter G-quadruplex DNA structures, and show that the NEIL glycosylases primarily remove Gh from Na+-coordinated antiparallel quadruplex DNA but not from K+-coordinated parallel quadruplex DNA containing VEGF or c-MYC promoter sequences.;Taken together, our data show that the NEIL DNA glycosylases may be involved in both telomere maintenance and gene regulation.
机译:G-四链体DNA是四链DNA结构,由于其富含G的序列及其结构,因此极易被氧化。如果未修复,对细胞的氧化性DNA碱基损伤可能是诱变的或致死性的。碱基切除修复(BER)途径是修复氧化DNA碱基的主要途径。 DNA糖基化酶是BER中的第一种酶,负责从DNA中去除碱基损伤。 DNA糖基化酶如何去除双链和单链DNA的碱基损伤,以及它们如何作用于G-​​四链体DNA方面,已有深入研究;在本论文的第二章中,我们研究了5种哺乳动物DNA的糖基化酶活性。 G-四链体DNA上的糖基化酶(OGG1,NTH1,NEIL1,NEIL2和小鼠Neil3)由包含单个碱基病变的端粒序列形成。我们发现,包含胸腺嘧啶乙二醇(Tg),8-氧代-7,8-二氢鸟嘌呤(8-oxoG),胍基乙内酰脲(Gh)或螺碳酰二乙内酰脲(Sp)的端粒序列均形成了反平行G-四链体DNA结构的篮子形式。在Na +溶液中。我们还显示,没有糖基化酶能够从四链体DNA中去除8-oxoG,而其进一步的氧化产物Sp和Gh是四链体DNA中mNeil3和NEIL1的良好底物。此外,mNeil3是唯一从四链体DNA中去除Tg的酶,在单链和双链DNA中,糖基化酶在端粒序列上下文中都强烈推荐Tg。在第三章中,我们将研究扩展到了端粒G-四链体。 K +溶液中的DNA,我们还研究了由启动子序列形成的四链DNA。我们发现8-oxoG,Gh和Sp降低热稳定性,并以位置依赖的方式改变端粒四链体DNA的折叠。同样,NEIL1和NEIL3 DNA糖基化酶能够去除乙内酰脲损伤,但包括OGG1在内的任何糖基化酶都不能从K +溶液中的端粒四聚体DNA中去除8-oxoG。有趣的是,NEIL1或NEIL3无法在四链体DNA中最容易氧化的部位有效去除乙内酰脲的损害。但是,当在通常研究的四重复四重DNA中添加一个额外的端粒TTAGGG重复序列,使其成为五重复端粒四重DNA时,NEIL1,NEIL2和NEIL3可以更快地清除四重DNA中同一位置的乙内酰脲损伤。 。我们还显示,APE1在Na +配位的端粒四联体DNA结构中的选定位置裂解呋喃。我们使用VEGF和c-MYC基因的启动子序列作为模型来研究启动子G-四链体DNA结构,并显示NEIL糖基化酶主要从Na +配位的反平行四链体DNA中除去Gh,而不是从K +配位的含VEGF的平行四联体DNA中去除Gh。总而言之,我们的数据表明,NEIL DNA糖基化酶可能参与端粒的维持和基因调控。

著录项

  • 作者

    Zhou, Jia.;

  • 作者单位

    The University of Vermont and State Agricultural College.;

  • 授予单位 The University of Vermont and State Agricultural College.;
  • 学科 Biology Molecular.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号