首页> 外文学位 >Probing Spin and Spin-Orbit Coupling effects in Narrow-gap Semiconductor Nano-structures by THz Magneto-photoresponse Spectroscopy and Magneto-transport Measurements.
【24h】

Probing Spin and Spin-Orbit Coupling effects in Narrow-gap Semiconductor Nano-structures by THz Magneto-photoresponse Spectroscopy and Magneto-transport Measurements.

机译:通过太赫兹磁光响应光谱法和磁传输测量方法来探测窄间隙半导体纳米结构中的自旋和自旋轨道耦合效应。

获取原文
获取原文并翻译 | 示例

摘要

Using the spin degree of freedom in a emergent field Known as Spintronics has motivated scientist in different disciplines including physicist within last 10 years. Due to different interaction mechanisms which affects the physical behavior of spin (eg its state and transport properties) within solid medium (Semiconductors in our case), one needs to distinguish these mechanisms and their importance for making any practical spin based devices. For example the idea of making spin based transistors with electrons being transported within InGaAs and their spin state is being controlled by Rashba type field has been around for around 25 years but injection of spin polarized currents from a source into the channel has not been solved yet. Spin orbit coupling (SOC) is one of the mechanisms which changes the spin state of electrons and avoid the existence of pure spin state as a favorable one from device point of view. SOC could have a different origin depending on material type or structure of device. One method of measuring and quantifying this mechanisms within semiconductor nanostructures is through measuring the parameters known as Lande g-factor. This parameters turns out to be a promising one to probe different effects on electronic band structure including quantum confinement, strain, electric filed, etc. We probe a combination of these effects (SOC, Strain, band mixing, etc) by measuring different g-factor tensor components of narrow gap Zinc blend semiconductor nanostructures which we hope finally serve to the purpose of making reliable spin based devices* (Spintronics). To reach this goal we have developed and implemented THz magneto-Photoresponse spectroscopy in conjunction with magneto-transport measurements at cryogenic temperatures. The samples include InAs and HgTe based Quantum wells as well as InAs based quantum point contact. Our findings clarify the situation where the combination of SOC, Strain, quantum confinements as well as many body electron effect changes different physical parameters of charge carriers (eg m*, g-factor, &agr;, etc) within the channel of transport for specific samples. Specifically the anisotropy of g-factor tensor as well as normal-to-plane component of g-factor tensor enhancement due to exchange many body effects will be discussed in chapter 4 and 5. We hope that our finding open a way for further characterization and investigation of electron properties within narrow gap based nanostructures at the quantum transport regime, including Paramagnetic spin resonance (EPR), and even detection of Majorana Fermion in hybrid superconductors/semiconductors devices.
机译:在新兴领域中使用自旋自由度在过去的十年中,众所周知的自旋电子学已经激励了包括物理学家在内的不同学科的科学家。由于影响固体介质(在我们的情况下为半导体)内自旋的物理行为(例如,自旋的状态和传输性质)的相互作用机制不同,因此需要区分这些机制及其对于制造任何实用的基于自旋的器件的重要性。例如,制造具有电子在InGaAs中传输并且其自旋状态受Rashba型场控制的自旋基晶体管的想法已经存在了大约25年,但是尚未解决将自旋极化电流从源注入通道的问题。 。从器件的角度来看,自旋轨道耦合(SOC)是改变电子自旋状态并避免存在纯自旋态的一种机制,而纯自旋态是一种有利的机制。 SOC可能有不同的来源,具体取决于设备的材料类型或结构。测量和量化半导体纳米结构内这种机理的一种方法是通过测量称为Lande g因子的参数。事实证明,此参数是一个有前途的参数,用于探测对电子能带结构的不同影响,包括量子约束,应变,电场等。我们通过测量不同的g-值来探测这些影响的组合(SOC,应变,能带混合等)。窄间隙锌混合半导体纳米结构的因子张量分量,我们希望最终将其用于制造可靠的基于自旋的器件*(Spintronics)。为了达到这个目标,我们已经开发并实施了太赫兹磁光响应光谱技术,并在低温下进行了磁传输测量。样品包括基于InAs和HgTe的量子阱以及基于InAs的量子点接触。我们的发现澄清了以下情况:SOC,应变,量子限制以及许多体电子效应的组合改变了特定传输通道内电荷载流子的不同物理参数(例如m *,g因子,agr等)。样品。具体来说,第4章和第5章将讨论g因子张量的各向异性以及由于交换许多身体效应而导致的g因子张量增强的法向平面分量。我们希望我们的发现为进一步的表征和研究开辟道路。在量子传输机制下研究基于窄间隙的纳米结构内的电子性质,包括顺磁自旋共振(EPR),甚至检测混合超导体/半导体器件中的Majorana Fermion。

著录项

  • 作者

    Pakmehr, Mehdi.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Physics Condensed Matter.;Nanotechnology.;Physics Optics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:51:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号