首页> 外文学位 >Intrafraction tumor motion management techniques in imaging, treatment planning, and IMRT delivery.
【24h】

Intrafraction tumor motion management techniques in imaging, treatment planning, and IMRT delivery.

机译:影像学,治疗计划和IMRT交付中的分数内肿瘤运动管理技术。

获取原文
获取原文并翻译 | 示例

摘要

Anatomic motion can affect the radiation treatment of disease sites in the thorax and abdomen. With four dimensional (4D) imaging modalities, respiratory motion can be defined on a patient specific basis. From 4D data sets, radiotherapy techniques can be devised to account for tissue motion. Systematic and random uncertainties must be characterized for each 4D imaging modality utilized. Some modalities, such as 4D-CT, require multiple motion trajectories in order to fully define the uncertainties associated with the imaging system. This is investigated in this work for a clinical 4D-CT scanning protocol and the methods used can be applied to any 4D imaging modality. Once all of the relevant tissues and their associated motion have been defined, with corrections to account for any associated uncertainties in the 4D data sets, treatment plans can be generated. For lung cancer, unique challenges arise when inverse planning is used, typically in the case of IMRT, because density differences between lung tissue and other tissues can result in quite different dose distributions. Because inverse planning is an optimization algorithm, the degree of optimization is dependent on the input parameters. One important input factor is the image set that is used for the dose calculation. For three image sets supplied to a commercial inverse planning algorithm (Average Image and an exhale phase image with motion envelope defined from a maximum intensity projection image, both with and without a density override to the motion envelope), dose calculated on the Average Image was found to be in best agreement with the dose calculated on the 4D-CT. Finally, when IMRT is delivered to mobile tumors, it is possible for the dose to the tumor to vary from treatment to treatment. Therefore, numerous methods have been investigated in order to reduce this variation. A computer simulation algorithm has been developed to predict the variation on a two spatial dimension plane and comparisons are made with measured data in a similar configuration. Variable tumor motion has also been considered in this respect.
机译:解剖运动会影响胸部和腹部疾病部位的放射治疗。利用四维(4D)成像模式,可以根据患者的具体情况定义呼吸运动。根据4D数据集,可以设计放射治疗技术来解决组织运动。必须为每个使用的4D成像方式表征系统和随机不确定性。为了完全定义与成像系统相关的不确定性,某些模式(例如4D-CT)需要多个运动轨迹。在这项工作中针对临床4D-CT扫描协议对此进行了调查,所使用的方法可以应用于任何4D成像方式。一旦定义了所有相关组织及其相关运动,并进行了校正以解决4D数据集中任何相关的不确定性,就可以生成治疗计划。对于肺癌,当使用逆向计划时,特别是在IMRT的情况下,就会出现独特的挑战,因为肺组织和其他组织之间的密度差异可能导致剂量分布完全不同。因为逆向计划是一种优化算法,所以优化程度取决于输入参数。一个重要的输入因素是用于剂量计算的图像集。对于提供给商业逆向规划算法的三个图像集(具有从最大强度投影图像定义的运动包络的平均图像和呼气相位图像,包括和不包括对运动包络的密度覆盖),在平均图像上计算的剂量为发现与4D-CT上计算的剂量最一致。最后,当IMRT传递至活动性肿瘤时,肿瘤的剂量可能因治疗而异。因此,已经研究了许多方法以减小这种变化。已经开发了一种计算机模拟算法来预测二维空间平面上的变化,并以类似的配置与测量数据进行比较。在这方面也考虑了可变的肿瘤运动。

著录项

  • 作者

    Ehler, Eric Drew.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Physics Radiation.;Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号