首页> 外文学位 >Titanium dioxide-based carbon monoxide gas sensors: Effects of crystallinity and chemistry on sensitivity.
【24h】

Titanium dioxide-based carbon monoxide gas sensors: Effects of crystallinity and chemistry on sensitivity.

机译:基于二氧化钛的一氧化碳气体传感器:结晶度和化学性质对灵敏度的影响。

获取原文
获取原文并翻译 | 示例

摘要

Among metal-oxide gas sensors which change electrical resistive properties upon exposure to target gasses, titanium dioxide (TiO2) has received attention for its sensitivity and stability during high temperature (>500°C) operation. However, due to the sensing mechanism sensitivity, selectivity, and stability remain as critical deficiencies to be resolved before these sensors reach commercial use. In this study, TiO2 thick films of approximately 30mum and thin films of approximately 1mum thick were fabricated to assess the influence of their material properties on gas sensing mechanism. Increased calcination temperature of TiO2 thick films led to grain growth, reduction in specific surface area, and particle-particle necking. These properties are known to degrade sensitivity; however the measured carbon monoxide (CO) gas response improved with increasing calcination temperature up to 800°C. It was concluded that the sensing improvement was due to increased crystallinity within the films. Sensing properties of TiO2 thin films of were also dependent on crystallization, however; due to the smaller volume of material, they reached optimized crystallization at lower temperatures of 650°C, compared to 800°C for thick films.;Incorporation of tungsten (W) and nickel (Ni) ions into the films created donor and acceptor defect sites, respectively, within the electronic band gap of TiO2. The additional n-type defects in W-doped TiO 2 improved n-type CO response, while p-type defects in Ni-doped TiO 2 converted the gas response to p-type. Chemistry of thin films had a more significant impact on the electrical properties and gas response than did microstructure or crystallinity. Doped films could be calcined at higher temperatures and yet remain highly sensitive to CO.;Thin films with p-n bi-layer structure were fabricated to determine the influence of a p-n junction on gas sensing properties. No effect of the junction was observed and the sensing response neared the average of the layers; however, electrical and gas response studies revealed that the majority of the conductivity and gas-surface reactions took place on the outer layer of the film. Further research is necessary to understand the influence of p-n junctions on the gas sensing behavior.
机译:在暴露于目标气体后会改变电阻特性的金属氧化物气体传感器中,二氧化钛(TiO2)因其在高温(> 500°C)操作期间的灵敏度和稳定性而受到关注。但是,由于传感机构的敏感性,选择性和稳定性仍然是这些传感器投入商业使用之前要解决的关键缺陷。在这项研究中,制作了约30μm的TiO2厚膜和约1μm的薄膜,以评估其材料性能对气体传感机理的影响。 TiO2厚膜的煅烧温度升高导致晶粒长大,比表面积减小和颗粒-颈缩。众所周知,这些特性会降低灵敏度。然而,随着煅烧温度升高至800°C,所测得的一氧化碳(CO)气体响应得到改善。结论是,感官的改善归因于膜内结晶度的提高。但是,TiO2薄膜的传感特性也取决于结晶。由于较小的材料体积,与厚膜的800°C相比,它们在650°C的较低温度下达到了最佳的结晶。;钨(W)和镍(Ni)离子掺入膜中会产生施主和受主缺陷分别位于TiO2电子带隙内。 W掺杂的TiO 2中的其他n型缺陷改善了n型CO响应,而Ni掺杂的TiO 2中的p型缺陷将气体响应转换为p型。薄膜的化学性质比微观结构或结晶度对电性能和气体响应的影响更大。掺杂的薄膜可以在更高的温度下煅烧,但仍对CO高度敏感。制造了具有p-n双层结构的薄膜,以确定p-n结对气体传感性能的影响。没有观察到结的影响,感测响应接近各层的平均值。然而,电气和气体响应研究表明,大多数电导率和气体表面反应发生在薄膜的外层。需要进一步的研究来了解p-n结对气体传感行为的影响。

著录项

  • 作者

    Seeley, Zachary Mark.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号