首页> 外文学位 >THE ANALYSIS OF DISLOCATION, CRACK, AND INCLUSION PROBLEMS IN PIEZOELECTRIC SOLIDS.
【24h】

THE ANALYSIS OF DISLOCATION, CRACK, AND INCLUSION PROBLEMS IN PIEZOELECTRIC SOLIDS.

机译:压电固体中的位错,裂纹和夹杂问题的分析。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is to serve as a framework for performing stress analyses of defects in piezoelectric materials. After a short literature review, the basic equations of piezoelectric elasticity are presented. These equations are a generalized form of Hooke's Law, the equilibrium equations, and the definition of the free energy potential for a piezoelectric solid. A short-hand notation is introduced by combining stress and electric displacement in a 3 x 4 matrix, elastic displacement and electric potential in a four component column vector, and by defining an electro-elastic constant matrix. When using this short-hand notation, the basic equations of piezoelectric elasticity take on a form very similar to that of the analogous equations encountered in anisotropic elasticity theory. This similarity is used to analyze various problems of interest in any basic elasticity theory.; First the Green's function for an infinite, homogeneous, piezoelectric solid is determined directly from the equations of equilibrium using the Radon integral transform. This Green's function is the elastic displacement and electric potential at a point P due to a unit point force and a unit point charge located at the point S.; Next this Green's function is used to analyze a D-CD defect L composed of a collinear dislocation and charge dipole line. Stress, electric displacement, elastic displacement, and electric potential are determined for the cases in which the defect L is either an infinite straight line or an infinitesimal line segment. The results for the infinitesimal D-CD defect are then used to analyze both planar and three dimensional D-CD defect arrangements in piezoelectric solids. This yields the piezoelectric analogues of the Brown-Lothe and Indenbom-Orlov theorems.; In addition, the stress-electric displacement matrix and the elastic displacement-electric potential column vector for a general defect composed of a collinear combination of a dislocation, a charge dipole line, a line of force, and a line of charge, as first presented by Barnett and Lothe in 1975, are reviewed and some minor corrections included. The results for this general defect are used to analyze a slit-like crack in an infinite, piezoelectric solid subject to a remote constant stress-electric displacement state. The stress and electric displacement intensity factors for this crack are determined. They are found to be independent of the electro-elastic constants for a slit-like crack. It is found that by a suitable choice of the externally applied electric displacement, crack growth can be arrested in a piezoelectric solid.; To complete this overview of piezoelectric elasticity theory, the Eshelby inclusion problem is generalized to the piezoelectric case using the Green's function mentioned earlier. An ellipsoidal inclusion, undergoing a change in shape, size, and electric potential, referred to as the transformation, in the presence of an infinite matrix, is analyzed. First matrix and inclusions are assumed to have the same electro-elastic constants and the transformation considered is a polynomial of degree P in the position coordinates. This result is simplified for the case P = 1 and used to analyze the case in which the inclusion and matrix have different electro-elastic coefficients. Finally, the electro-elastic fields due to the presence of an ellipsoidal peizoelectric inhomogeneity in an infinite, piezoelectric solid subject to a constant elastic strain-electric field state throughout, are determined. For each of the inclusion problems, free energy calculations are also carried out.
机译:本论文将作为压电材料缺陷应力分析的框架。经过简短的文献回顾,提出了压电弹性的基本方程。这些方程式是胡克定律,平衡方程式和压电固体自由能势的广义形式。通过在3 x 4矩阵中组合应力和电位移,在四分量列向量中组合弹性位移和电势并定义电弹性常数矩阵来引入简写形式。当使用这种简写形式时,压电弹性的基本方程采用与各向异性弹性理论中遇到的类似方程非常相似的形式。这种相似性用于分析任何基本弹性理论中感兴趣的各种问题。首先,使用Radon积分变换直接从平衡方程中确定无限均质压电固体的格林函数。格林函数是由于单位点力和位于点S的单位点电荷引起的点P处的弹性位移和电位。接下来,该格林函数用于分析由共线位错和电荷偶极线组成的D-CD缺陷L。对于缺陷L是无限的直线或无限的线段的情况,确定应力,电位移,弹性位移和电势。然后将无穷小D-CD缺陷的结果用于分析压电固体中的平面和三维D-CD缺陷排列。这产生了Brown-Lothe和Indenbom-Orlov定理的压电类似物。另外,首先介绍了由位错,电荷偶极线,力线和电荷线的共线组合组成的一般缺陷的应力-电位移矩阵和弹性位移-电势列向量。由Barnett和Lothe于1975年进行了审查,并作了一些小的更正。此一般缺陷的结果用于分析处于无限远的恒定应力-电位移状态的无限压电固体中的狭缝状裂纹。确定该裂纹的应力和电位移强度因子。发现它们与狭缝状裂纹的电弹性常数无关。已经发现,通过适当选择外部施加的电位移,可以将裂纹扩展抑制在压电固体中。为了完成对压电弹性理论的概述,使用前面提到的格林函数将Eshelby包含问题推广到压电情况。在存在无限矩阵的情况下,分析了形状,尺寸和电势发生变化的椭圆形夹杂物,称为相变。假定第一矩阵和内含物具有相同的电弹性常数,并且所考虑的变换是位置坐标中度为P的多项式。对于P = 1的情况,简化了此结果,并用于分析夹杂物和基体具有不同电弹性系数的情况。最后,确定由于在无限的压电固体中始终存在恒定的弹性应变-电场状态而导致的椭圆形压电非均质性引起的电弹性场。对于每个包含问题,还执行自由能计算。

著录项

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1980
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号