首页> 外文学位 >Reconstruction 3D de la forme d'aiguilles chirurgicales en utilisant la réflectométrie fréquentielle dans des fibres optiques
【24h】

Reconstruction 3D de la forme d'aiguilles chirurgicales en utilisant la réflectométrie fréquentielle dans des fibres optiques

机译:使用光纤中的频率反射仪对外科手术针的形状进行3D重建

获取原文
获取原文并翻译 | 示例

摘要

The main objective of the research project is to track the shape of minimally invasive surgical tools (mainly needles) by inserting optical fibers into them. By measuring the strain along the fibers, we can easily relate it to the curvature of the fibers. Using three fibers glued together in a triangular geometry, the difference in the measured curvature of each fiber allows one to orientate the curvature in a 3D frame. Since the approach for shape tracking is strictly based on the insertion of optical fibers inside the restricted space available in minimally invasive surgical tools, it can be used with many types of surgical tools such as catheter needles, colonoscopes, or any other remotely controlled instrument. The knowledge of the position of the device inside the human body is of paramount importance to maximise the success of the intervention.;Up to now, the most studied approach for shape tracking using optical fibers is based on fiber Bragg gratings (FBGs), which are useful devices to measure the strain in fibers. To the best of our knowledge, the best precision reached in the literature based on FBGs is ∼0.28mm, corresponding to the accuracy in the predicted needle tip position. To reach this precision, two sensors were used, each one containing a set of three fibres with 3 FBGs (one in each fiber) for a total of 6 FBGs. More studies have been made using similar devices, with more or less number of FBG sensors separated by different distances. Most of these studies achieve an accuracy in the order of few millimeters. However, this approach to measure strain along the fibers is completely discrete since the strain is only known at the positions where the FBGs are located. Approximations are thus necessary to extrapolate the strains to recover the whole shape of the needle.;This project suggests a truly distributed approach, different to the discrete FBGs technique, which has received little attention up to now for this type of applications. Our first hypothesis is that the precision of the shape tracking can be enhanced by using truly distributed strain sensing (instead of discrete sensing) since approximations are not needed to obtain the shape of the entire needle.;This approach is based on optical frequency domain reflectometry (OFDR), which is an interferometric method frequently used to measure the attenuation along fibers. Indeed, OFDR is based on Rayleigh scattering, which is caused by a random distribution of refractive index on a microscopic scale in the fiber core. A frequency swept signal is thus sent inside a fiber and by measuring the frequency of an interference signal, the complex amplitude of the backscattered signal as a function of the position along the fiber can be measured. By doing a Fourier transform of this signal, the spectrum of the reflected signal can be measured for small sections of the fiber (Deltax), which correspond to the spatial resolution of the strain sensing approach based on OFDR. When the fibers undergo strain, this spectrum shift to shorter or longer wavelengths, depending on whether the fiber is stressed or compressed. By measuring the spectral shift, the strain along the fiber can be quantified since these values are directly proportional, which leads to a truly distributed strain sensor.;Using this approach, shape tracking of surgical needles has been performed strictly in vitro. A geometric model based on the work of another research group has been used to transform the sensed strain to shape sensing. Using single mode fibers (SMF), a maximum accuracy of 0.9+/-0.3mm over the entire needle shape for a tip deflection of 6.35mm has been obtained, which is clearly enough for clinical applications. However, we note that in the present work, this accuracy decreases as the curvature of the needle increases.;Our second hypothesis is that using optical fibers with higher Rayleigh scattering coefficient can allow one to reach higher accuracy. To verify this hypothesis, the accuracy of such devices using three different types of fibers has been compared. These fibers are SMF, Germanium Boron doped photosensitive fibers (Redfern) and UV exposed SMF. By UV exposing SMF, it has been shown that Rayleigh scattering can be considerably enhanced. The maximal accuracy obtained has thus passed from 0.9+/-0.3mm for SMF to 0.6+/-0.2mm for UV exposed SMF, which is the fiber that showed the higher amount of Rayleigh scatter. This enhancement is the accuracy of the device is clearly our most valuable contribution to this field of research.
机译:该研究项目的主要目的是通过将光纤插入微创手术工具(主要是针头)的形状来跟踪它们的形状。通过测量沿纤维的应变,我们可以轻松地将其与纤维的曲率联系起来。使用三根以三角形几何形状胶合在一起的纤维,每根纤维的测量曲率差异可以使一个纤维在3D框架中定向。由于形状跟踪的方法严格基于微创外科手术工具中可用的受限空间内的光纤插入,因此它可与多种类型的外科手术工具一起使用,例如导管针,结肠镜或任何其他远程控制的器械。了解设备在人体中的位置对于最大程度地提高干预效果至关重要。到目前为止,使用光纤进行形状跟踪的研究最多的方法是基于光纤布拉格光栅(FBG),是测量纤维应变的有用设备。据我们所知,基于FBG的文献中达到的最佳精度约为0.28mm,与所预测的针尖位置的精度相对应。为了达到此精度,使用了两个传感器,每个传感器包含一组三个光纤,每个光纤带有3个FBG(每个光纤一个),总共6个FBG。使用类似的设备已经进行了更多的研究,越来越多的FBG传感器被不同的距离分开。这些研究大多数都达到了几毫米的精度。但是,这种测量纤维应变的方法是完全不连续的,因为仅在FBG所在的位置才知道应变。因此,需要近似方法来推断应变以恢复针头的整体形状。该项目提出了一种真正的分布式方法,与离散FBGs技术不同,到目前为止,此类方法很少受到关注。我们的第一个假设是,通过使用真正的分布式应变感测(而不是离散感测)可以提高形状跟踪的精度,因为不需要近似来获得整个针的形状。;这种方法基于光学频域反射仪(OFDR),这是一种干涉测量方法,通常用于测量沿光纤的衰减。确实,OFDR基于瑞利散射,这是由纤芯中微观尺度上的折射率的随机分布引起的。扫频信号因此被发送到光纤内部,并且通过测量干扰信号的频率,可以测量反向散射信号的复振幅作为沿着光纤的位置的函数。通过对该信号进行傅立叶变换,可以针对光纤的一小部分(Deltax)测量反射信号的频谱,这对应于基于OFDR的应变传感方法的空间分辨率。当光纤受到应变时,取决于光纤受压还是受压,该光谱会移至较短或较长的波长。通过测量光谱位移,可以量化沿纤维的应变,因为这些值是成正比的,这导致了真正分布的应变传感器。使用这种方法,严格在体外进行了手术针的形状跟踪。基于另一个研究小组的工作的几何模型已用于将感测到的应变转换为形状感测。使用单模光纤(SMF),在整个针头形状上获得的最大精度为0.9 +/- 0.3mm,针尖偏转为6.35mm,这显然足以用于临床。但是,我们注意到在当前工作中,这种精度会随着针的曲率的增加而降低。我们的第二个假设是,使用具有较高瑞利散射系数的光纤可以使光纤达到更高的精度。为了验证这一假设,已经比较了使用三种不同类型光纤的此类设备的准确性。这些纤维是SMF,掺锗硼的光敏纤维(Redfern)和紫外线暴露的SMF。通过紫外线曝光SMF,已显示出瑞利散射可以大大增强。因此,所获得的最大精度已从SMF的0.9 +/- 0.3mm变为UV暴露的SMF的0.6 +/- 0.2mm,这是表现出较高瑞利散射量的光纤。这种提高的精确度显然是我们在该研究领域中最有价值的贡献。

著录项

  • 作者

    Parent, Francois.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Biomedical engineering.;Surgery.;Mechanical engineering.
  • 学位 M.A.Sc.
  • 年度 2016
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号