首页> 外文学位 >Improving accuracy and precision in biological applications of fluorescence lifetime imaging microscopy.
【24h】

Improving accuracy and precision in biological applications of fluorescence lifetime imaging microscopy.

机译:提高荧光寿命成像显微镜在生物应用中的准确性和精确度。

获取原文
获取原文并翻译 | 示例

摘要

The quantitative understanding of cellular and molecular responses in living cells is important for many reasons, including identifying potential molecular targets for treatments of diseases like cancer. Fluorescence lifetime imaging microscopy (FLIM) can quantitatively measure these responses in living cells by producing spatially resolved images of fluorophore lifetime, and has advantages over intensity-based measurements. However, in live-cell microscopy applications using high-intensity light sources such as lasers, maintaining biological viability remains critical. Although high-speed, time-gated FLIM significantly reduces light delivered to live cells, making measurements at low light levels remains a challenge affecting quantitative FLIM results.;We can significantly improve both accuracy and precision in gated FLIM applications. We use fluorescence resonance energy transfer (FRET) with fluorescent proteins to detect molecular interactions in living cells: the use of FLIM, better fluorophores, and temperature/CO2 controls can improve live-cell FRET results with higher consistency, better statistics, and less non-specific FRET (for negative control comparisons, p-value = 0.93 (physiological) vs. 9.43E-05 (non-physiological)). Several lifetime determination methods are investigated to optimize gating schemes. We demonstrate a reduction in relative standard deviation (RSD) from 52.57% to 18.93% with optimized gating in an example under typical experimental conditions. We develop two novel total variation (TV) image denoising algorithms, FWTV ( f-weighted TV) and UWTV (u-weighted TV), that can achieve significant improvements for real imaging systems. With live-cell images, they improve the precision of local lifetime determination without significantly altering the global mean lifetime values (5% lifetime changes). Finally, by combining optimal gating and TV denoising, even low-light excitation can achieve precision better than that obtained in high-light cases (RSD = 12.76% at total photon counts (TC) = 100 vs. RSD = 23.03% at TC = 400). Therefore, high-intensity excitation of living cells can be avoided. Notable five-fold improvements in precision (RSD from 49.90% to 11.94%) are easily observed in our extreme low-light example.;This study overcomes several challenges associated with making quantitative measurements of cellular responses, by enabling novel fluorescence lifetime map construction for better quantitation of molecular interactions and sub-cellular environmental changes in live cells.
机译:出于多种原因,对活细胞中细胞和分子反应的定量理解很重要,其中包括确定治疗癌症等疾病的潜在分子靶标。荧光寿命成像显微镜(FLIM)可以通过产生荧光团寿命的空间分辨图像来定量测量活细胞中的这些反应,并且与基于强度的测量相比具有优势。但是,在使用高强度光源(例如激光器)的活细胞显微镜应用中,保持生物生存力仍然至关重要。尽管高速,定时门控FLIM显着减少了传递到活细胞的光,但在低光照水平下进行测量仍然是影响定量FLIM结果的挑战。我们可以显着提高门控FLIM应用的准确性和精密度。我们使用带有荧光蛋白的荧光共振能量转移(FRET)来检测活细胞中的分子相互作用:使用FLIM,更好的荧光团和温度/ CO2控制可以改善活细胞FRET的结果,具有更高的一致性,更好的统计数据以及更少的非特异性FRET(对于阴性对照比较,p值= 0.93(生理学)与9.43E-05(非生理学))。研究了几种寿命确定方法以优化选通方案。在一个典型的实验条件下,通过优化选通,我们证明了相对标准偏差(RSD)从52.57%降低到18.93%。我们开发了两种新颖的总变异(TV)图像去噪算法,FWTV(f加权电视)和UWTV(u加权电视),它们可以对真实的成像系统进行重大改进。使用活细胞图像,它们可以提高局部寿命确定的精度,而不会显着改变全局平均寿命值(小于5%的寿命变化)。最后,通过结合最佳选通和电视降噪,即使是弱光激发也可以获得比强光情况更好的精度(在总光子计数(TC)= 100时,RSD = 12.76%;在TC = =时,RSD = 23.03%)。 400)。因此,可以避免活细胞的高强度激发。在我们的极端弱光示例中,可以很容易地观察到精度显着提高了五倍(RSD从49.90%提高到11.94%);该研究通过实现新颖的荧光寿命图构建,克服了与定量测量细胞反应相关的若干挑战。更好地定量活细胞中的分子相互作用和亚细胞环境变化。

著录项

  • 作者

    Chang, Ching-Wei.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号