首页> 外文学位 >EVALUATION OF A MODEL WHICH PREDICTS WHOLE PLANT RESPIRATION FROM PHOTOSYNTHESIS AND BIOMASS.
【24h】

EVALUATION OF A MODEL WHICH PREDICTS WHOLE PLANT RESPIRATION FROM PHOTOSYNTHESIS AND BIOMASS.

机译:从光合作用和生物量预测整个植物呼吸的模型的评估。

获取原文
获取原文并翻译 | 示例

摘要

Over time, whole plant growth is nearly the balance between photosynthesis and respiration. This research consisted of devising and testing a model which predicts plant respiration rates from knowledge of the photosynthesis rate and initial weight of the biomass, on an instantaneous basis. Parameter determination, establishment of initial conditions, calculations of photosynthesis rate, and model testing were carried out using only carbon exchange rate (CER) data and the final dry weight in carbon equivalents.;Previous research has shown that a plant grown in a constant light and temperature regime will reach a state where no net change in POOL occurs over a light-dark cycle. In this state, a plant's daily respiration was found to equal (1-YG) of the daily photosynthesis plus a fraction of the plant biomass in carbon equivalents. Simulation studies indicated this model can replicate these findings. The model is dynamic and can predict plant growth and respiration even if POOL varies due to changes in photosynthesis rate. Additionally, observed effects of POOL size on photosynthesis were replicated.;To evaluate the model and the effect of temperature on its parameters, grain sorghum (Sorghum bicolor (L.) Moench) plants were grown at 25, 30, and 35(DEGREES)C for about 3 weeks, reaching the 9 leaf stage. Plant response for each growth temperature was tested at 25, 30, and 35(DEGREES)C resulting in a 3 growth temperature by 3 test temperature factorial design. The plants were placed in an assimilation chamber and CER data collected. The plants were initially subjected to about 48 hours of darkness allowing determination of E, B, and initial levels of SDM and POOL. YG was assumed to have a value of .75 from previous work. MAXGRO was never achieved and thus, not required.;The model was tested by turning on the lights continuously except for brief, intermittent, periods of darkness. Photosynthesis was calculated by adding the CER measurement to a value of respiration predicted from the POOL and SDM levels. In turn, new values of POOL and SDM were computed from photosynthesis, predicted growth, and maintenance rates. The test of the model was the comparison of measured and predicted respiration rates during the dark periods.;The model considers the plant to consist of two quantities, the photosynthate pool (POOL) and the structural dry matter (SDM). These are acted upon by three processes: photosynthesis, SDM synthesis, and SDM maintenance. Photosynthesis fills the POOL. A fixed fraction of the POOL, the yield of growth (YG), is converted to SDM. The remainder provides energy for SDM synthesis and is respired as growth respiration. SDM synthesis proceeds at a rate proportional to POOL size until a maximum growth rate (MAXGRO), proportional to SDM is reached. When SDM synthesis is less than MAXGRO, POOL usage rate is determined by the POOL efflux coefficient (E), a fraction of POOL per hour. Energy costs for maintaining SDM are borne by SDM, giving rise to maintenance respiration. This is described by the maintenance coefficient (B), a fraction of SDM per hour.;It was concluded that: (1) The model can predict whole plant respiration with an accuracy of (+OR-) 25% using as an input CER data with an accuracy of (+OR-) 10%. (2) No temperature effect on E or B was observed. (3) Since MAXGRO was never achieved, photosynthesis, rather than SDM synthesis limited biomass production. (4) The model and its limits are well-defined, such that its use can be restricted to those situations where it is sufficiently accurate.
机译:随着时间的流逝,整个植物的生长几乎是光合作用和呼吸作用之间的平衡。这项研究包括设计和测试一个模型,该模型可以基于对光合作用速率和生物质初始重量的了解来预测植物的呼吸速率。仅使用碳交换率(CER)数据和最终干重(以碳当量为单位)进行参数确定,初始条件的确定,光合作用率的计算和模型测试。先前的研究表明,在恒定光照下生长的植物并且温度范围将达到在明暗周期内POOL不会发生净变化的状态。在这种状态下,发现植物的每日呼吸量等于每日光合作用的(1-YG)加上碳当量中植物生物量的一部分。仿真研究表明该模型可以复制这些发现。该模型是动态的,即使POOL因光合作用率的变化而变化,也可以预测植物的生长和呼吸。此外,复制观察到的POOL大小对光合作用的影响。为了评估模型和温度对其参数的影响,谷物高粱(Sorghum bicolor(L.)Moench)植物分别在25、30和35(DEGREES)下生长C约3周,达到9叶期。在25、30和35(DEGREES)C下测试每种生长温度的植物响应,通过3种测试温度因子设计得出3种生长温度。将植物放置在同化室中并收集CER数据。首先将植物置于约48小时的黑暗中,以测定E,B以及SDM和POOL的初始水平。以前的工作假设YG的值为0.75。 MAXGRO从未实现,因此不是必需的。;该模型通过连续打开灯进行测试,除了短暂的,间歇的黑暗时段。通过将CER测量值添加到根据POOL和SDM水平预测的呼吸值来计算光合作用。反过来,从光合作用,预测的生长和维持率计算出POOL和SDM的新值。该模型的测试是比较在黑暗时期测得的呼吸速率和预测的呼吸速率。该模型认为植物由光合产物池(POOL)和结构干物质(SDM)两个数量组成。这些过程通过三个过程进行:光合作用,SDM合成和SDM维护。光合作用填充了POOL。 POOL的固定部分即增长量(YG)被转换为SDM。其余的为SDM合成提供能量,并作为生长呼吸而被呼吸。 SDM合成以与POOL大小成比例的速率进行,直到达到与SDM成比例的最大生长速率(MAXGRO)。当SDM合成小于MAXGRO时,POOL使用率由POOL流出系数(E)(每小时POOL的分数)决定。维护SDM的能源成本由SDM承担,从而导致维护呼吸。这可以通过维持系数(B)(每小时SDM的一部分)来描述。得出的结论是:(1)该模型可以使用输入CER作为输入值,以(+ OR-)25%的精度预测整个植物的呼吸。精度为(+ OR-)10%的数据。 (2)未观察到温度对E或B的影响。 (3)由于从未实现MAXGRO,因此光合作用而不是SDM合成限制了生物量的产生。 (4)模型及其限制定义明确,因此可以将其使用限制在足够准确的情况下。

著录项

  • 作者

    GAY, SCOTT LALLIER.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Agronomy.
  • 学位 Ph.D.
  • 年度 1981
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号