首页> 外文学位 >IO: MODELS OF VOLCANISM AND INTERIOR STRUCTURE (JUPITER, MOON, CALDERAS, HEAT FLOW, LACCOLITHS).
【24h】

IO: MODELS OF VOLCANISM AND INTERIOR STRUCTURE (JUPITER, MOON, CALDERAS, HEAT FLOW, LACCOLITHS).

机译:IO:火山和内部结构的模型(JUPITER,MOON,CALDERAS,热流,LACCOITHS)。

获取原文
获取原文并翻译 | 示例

摘要

The silicate "magma trigger" model of volcanism on Io has been evaluated numerically with finite element methods by considering the one-dimensional heat transfer between hot silicate magma and initially cold sulfur. It is found that for the probable range of initial magma temperatures and sulfur temperatures, the contact between silicate magma and a sulfur crust will be 700 (+OR-) 100 K, or approximately the vapor point of elemental sulfur. A silicate magma sill or laccolith on the order of 10 m thick will yield energetic vapor for a period of several weeks to several months depending on the vapor temperature and the amount of convective cooling of the silicate magma that occurs at the silicate-sulfur interface. This model may account for the origin of plumes and possible sulfur flows, as well as for their observed temperatures ((TURN) 600-700K) and lifetimes (several days to a few months).;Most of the heat flow from Io may be moved by convection from the interior to the surface, not by conduction. Heat flow may be modulated by the efficient transfer of silicate melts from 40 to 300 km depth, and emplaced as laccoliths at the sulfur-silicate crustal interfaces at a depth of 5-10 km. Sulfur flows, plumes, calderas and other areas of massive radiant heat dissipation continue the convective cycle to the surface.;The temperature at the base of the sulfur crust may be less than the melting point of sulfur, and the silicate magma temperature can be as low as 1200 K. Low silicate magma temperatures will occur if the crust of Io is as differentiated as terrestrial rhyolites and trachytes. High alkalies in the Io plasma torus suggest the possibility that the Ionian crust is a highly differentiated silicate.;If the conducted heat flow is similar in high and low latitudes, then the low latitude occurrence of plumes may be explained as a result of lower temperatures at higher latitudes. Because the contact temperature of sulfur and silicate magma depends on the pre-existing sulfur temperature, a system in which sulfur vapor temperature is just reached at the equator would not generate sulfur vapor under lower initial sulfur temperatures existing at high latitudes. If the heat flow is higher in high latitudes, then the sulfur crust must be thinner than it is in low latitudes for the model to work as described above.
机译:通过考虑热硅酸盐岩浆与最初的冷硫之间的一维传热,用有限元方法对Io火山岩的硅酸盐“岩浆触发”模型进行了数值评估。发现对于初始岩浆温度和硫温度的可能范围,硅酸盐岩浆和硫壳之间的接触将为700(+ OR-)100 K,或大约元素硫的蒸气点。硅酸盐岩浆基岩或厚度为10 m的漆岩将产生高能蒸汽,持续数周至数月,具体取决于蒸汽温度和在硅酸盐-硫界面处对流的硅酸盐岩浆的对流冷却量。该模型可能解释了羽流的起源和可能的硫流,以及它们的观测温度((TURN)600-700K)和寿命(几天到几个月).;来自Io的大部分热量流可能是通过对流从内部到表面移动,而不是通过传导移动。可以通过有效转移40至300 km深度的硅酸盐熔体来调节热流,并在5-10 km深度处以硫磺形式沉积在硫硅酸盐地壳界面。硫的流动,烟羽,破火山口和其他大量辐射散热的区域继续对表面的对流循环;硫壳底部的温度可能低于硫的熔点,而硅酸盐岩浆的温度可能为温度低至1200K。如果Io的地壳与陆地流纹岩和菱形千篇一律区分,则硅酸盐岩浆温度低。 Io等离子体环中的高碱度表明爱奥尼亚地壳是高度分化的硅酸盐的可能性。如果在高纬度和低纬度中传导的热流相似,则可能是由于较低温度导致羽流低纬度的原因。在较高的纬度。由于硫和硅酸盐岩浆的接触温度取决于预先存在的硫温度,因此在高纬度存在的较低初始硫温度下,仅在赤道达到硫蒸气温度的系统不会产生硫蒸气。如果在高纬度地区热流较高,则硫壳必须比在低纬度地区薄,以使模型按上述方式工作。

著录项

  • 作者

    CRUMPLER, LARRY STEVEN.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Geophysics.;Astronomy.
  • 学位 Ph.D.
  • 年度 1983
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:51:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号