首页> 外文学位 >Ion implantation of gadolinium in compound semiconductor materials and potential spintronic device applications.
【24h】

Ion implantation of gadolinium in compound semiconductor materials and potential spintronic device applications.

机译:化合物半导体材料中ado的离子注入和潜在的自旋电子器件应用。

获取原文
获取原文并翻译 | 示例

摘要

As device dimensions have continued to shrink, atomistic scale fluctuations in material properties are beginning to limit continued improvements in device performance. Various technologies are being pursued to overcome this problem. Spin transport electronics, or spintronics, has been proposed as an attractive approach. This technology utilizes the spin of the electron, in addition to the charge of the electron, to transmit information through a device. The most promising materials for spintronic device applications are dilute magnetic semiconductors, which are formed when dilute amounts of magnetic atoms are incorporated into semiconductor materials. Recently, ion implantation has been studied as the incorporation method of magnetic ions into a host semiconductor material system for potential spintronic applications. This method provides excellent control over the quantity of the implanted ion and the resultant magnetic properties of the implanted material.;For this study, the compound semiconductor materials GaN, ZnO, and GaAs are examined as target materials for Gd ion implantation. Before implantation, these materials exhibited ferromagnetic behavior without the known presence of magnetic impurities and with a dependence on the applied magnetic field/sample surface orientation. Measuring the magnetic properties of these materials with a perpendicular orientation between the applied field and the sample surface exhibited a larger magnetic signal than examining with a parallel orientation between the applied field and sample surface, described in this work as an anisotropic enhancement effect. Ferromagnetism was demonstrated in hysteresis loops visible at both low temperature (10 K) and room temperature. The ferromagnetic mechanism occurring in the non-implanted materials is speculated as being due to anion-related defects (vacancies and interstitials).;Ferromagnetism was also demonstrated in the implanted compound semiconductor materials. Implanting Gd ions into GaN has resulted in this material exhibiting ferromagnetic behavior before any thermal annealing treatment. Co-implanting Si ions with Gd ions in GaN also shows room temperature ferromagnetism and a larger magnetic moment than the same GaN only implanted with Gd. Additional studies into the effects of Gd ion implantation on the magnetic properties of another wurtzite crystal structure compound semiconductor material (ZnO) and a small band gap semiconductor material (GaAs) provide additional insight into the ferromagnetic mechanism present in these materials. The mechanism occurring in the implanted materials is speculated as being due to interactions between the native defects and defects introduced during implantation with the implanted Gd. This interaction may be caused by long-range spin polarization that is demonstrated by the large magnetic moments observed in this work. Anion-related defects (vacancies and interstitials) appear to be the most likely defects to exhibit a spin orbit coupling with the implanted Gd atoms based on studies of implanted p-GaN and n-GaN. The effects of thermal annealing on the magnetic properties of the implanted thin films have also been investigated in implanted GaN and demonstrated that annealing does reduce the ferromagnetic ordering due to the decreased defect density as a result of the repaired lattice damage.;Based on these results, ion implantation provides an exemplary method to control the amount of incorporated magnetic ions and results in desirable magnetic properties in the implanted materials for spintronic applications. The ferromagnetic mechanism occurring in the implanted materials appear to rely on the type and density of defects interacting with the magnetic impurity implanted into the compound semiconductor material. The next step would be to further develop a model predicting the ferromagnetic mechanism exhibited by the implanted materials and then leveraging that mechanism to select the optimal compound semiconductor material/implant species and dose combination to create a functional spintronic device.
机译:随着器件尺寸的不断缩小,材料性能的原子尺度波动已开始限制器件性能的持续提高。为了克服该问题,正在寻求各种技术。自旋运输电子学或自旋电子学已被提出作为一种有吸引力的方法。除了电子的电荷外,这项技术还利用电子的自旋来通过设备传输信息。自旋电子器件应用中最有前途的材料是稀磁半导体,当将少量的磁原子掺入半导体材料时会形成稀磁半导体。近来,已经研究了离子注入作为将磁性离子结合到主体半导体材料系统中以用于潜在的自旋电子学应用的方法。这种方法可以很好地控制离子的注入量和所注入材料的磁性。对于本研究,将化合物半导体材料GaN,ZnO和GaAs作为Gd离子注入的靶材进行了研究。在植入之前,这些材料表现出铁磁行为,没有已知的磁性杂质存在,并且取决于所施加的磁场/样品表面取向。在外加电场和样品表面之间垂直取向的情况下测量这些材料的磁性能比在外加电场和样品表面之间平行取向的情况下测量的磁性信号更大,在这项工作中被称为各向异性增强效果。在低温(10 K)和室温下均可见的磁滞回线中证明了铁磁性。推测在非植入材料中发生的铁磁机理是由于与阴离子有关的缺陷(空位和间隙)引起的。在植入的化合物半导体材料中还证明了铁磁性。将Gd离子注入GaN已导致该材料在任何热退火处理之前显示出铁磁行为。与仅注入Gd的相同GaN相比,在GaN中共同注入Si离子和Gd离子还显示出室温铁磁性和更大的磁矩。进一步研究Gd离子注入对另一种纤锌矿晶体结构化合物半导体材料(ZnO)和小带隙半导体材料(GaAs)的磁性的影响,为这些材料中存在的铁磁机理提供了更多的见识。据推测,发生在植入材料中的机理是由于天然缺陷和在利用植入的Gd植入期间引入的缺陷之间的相互作用所致。这种相互作用可能是由远距离的自旋极化引起的,这在这项工作中观察到了很大的磁矩。根据对p-GaN和n-GaN的研究,与阴离子有关的缺陷(空位和间隙)似乎是最有可能与注入的Gd原子发生自旋轨道耦合的缺陷。在注入的GaN中还研究了热退火对注入的薄膜的磁性能的影响,结果表明退火确实会由于修复的晶格损坏而导致缺陷密度降低而降低铁磁有序性。离子注入提供了一种示例性方法来控制掺入的磁性离子的量,并在用于自旋电子学应用的注入材料中产生理想的磁性。出现在植入材料中的铁磁机制似乎取决于缺陷的类型和密度,该缺陷的类型和密度与植入化合物半导体材料中的磁性杂质相互作用。下一步将是进一步开发一个模型,该模型预测植入材料所表现出的铁磁机制,然后利用该机制选择最佳化合物半导体材料/植入物种类和剂量组合,以创建功能性自旋电子器件。

著录项

  • 作者

    Davies, Ryan Patrick.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号