首页> 外文学位 >THE MATERIALS SUBSTITUTION IN RARE EARTH PERMANENT MAGNETS.
【24h】

THE MATERIALS SUBSTITUTION IN RARE EARTH PERMANENT MAGNETS.

机译:稀土永磁体中的材料替代。

获取原文
获取原文并翻译 | 示例

摘要

The magnetic properties of (Co,Fe)(,3n+5)R(,n+1)B(,2n )(R = Y, Ce, CeMM, Pr, and Gd) (n = 1,2) and the ternary boride of Fe-R-B, nominally Fe(,14)R(,2)B, were investigated(,.); For the (Co,Fe)(,3n+5)R(,n+1)B(,2n) homologous series (R = Y, Ce, CeMM, Pr, Sm, Gd) (n = 1,2,3), the results of previous work and the present investigation can be summarized as follows: (1) The magnetic moments and Curie temperatures decrease with increasing boron content in the compound series. (2) For Co-Sm-B and Co-Gd-B compound series the coercivity increases with increasing boron content in the compound, but this was not observed in other rare earth compound series. The coercive forces obtained without special treatment have the highest values for the compounds with Sm and Gd. (3) The moment and the Curie temperature vary according to the type of rare earth element in the compound as well as its elemental moment and its coupling in the structure. The compounds with Sm have the highest Curie temperatures. (4) The Fe-replacement for Co atoms increases both the values of magnetic moments and Curie temperatures as the Fe content increases in the structure. The presence of Fe atoms does not increase the coercivity except for compounds based on Sm and Pr. (5) The maximum inclusion of Fe in each homologue decreases systematically with increasing series index n. (6) The addition of Zr increases the coercivity of the compound series.; The properties of cobalt-free and samarium-free permanent magnet materials based on an iron-rare earth boride can be summarized as follows: (1) The magnetic phase in the Fe-Pr-B system has a primitive tetragonal lattice (a = 0.886, c = 1.224 nm). It exhibits high magnetocrystalline anisotropy with a single easy axis along 001 . The systems Fe-La-B, Fe-Ce-B, Fe-Nd-B, Fe-Sm-B, and Fe-Gd-B have the same phase and comparable properties. (2) The ideal composition of the tetragonal magnetic boride is Fe(,14)R(,2)B; its real composition may be Fe(,14)R(,2)B(,1+x) where x is a fraction. (3) The tetragonal boride does not melt congruently. The amount of primary iron phase decreases in the direction La(--->)Pr(--->)Nd. Ni does not form the tetragonal phase. (4) The addition of Co and Ni increases the Curie temperature of the boride while the addition of Mn decreases the Curie temperature. (5) We believe that a major contribution to coercivity in sintered Fe-Nd-B magnets is due to particle size and a smaller fraction to inclusions or a defect structure.
机译:(Co,Fe)(,3n + 5)R(,n + 1)B(,2n)(R = Y,Ce,CeMM,Pr和Gd)(n = 1,2)的磁性研究了Fe-RB的三元硼化物,名义上是Fe(,14)R(,2)B;对于(Co,Fe)(,3n + 5)R(,n + 1)B(,2n)同源序列(R = Y,Ce,CeMM,Pr,Sm,Gd)(n = 1,2,3 ),前期工作和本研究的结果可总结如下:(1)化合物系列中的磁矩和居里温度随硼含量的增加而降低。 (2)对于Co-Sm-B和Co-Gd-B化合物系列,矫顽力随化合物中硼含量的增加而增加,但是在其他稀土化合物系列中未观察到。对于未经处理的Sm和Gd化合物,矫顽力最高。 (3)力矩和居里温度根据化合物中稀土元素的类型,元素力矩及其在结构中的耦合而变化。具有Sm的化合物具有最高居里温度。 (4)随着结构中Fe含量的增加,Co原子的Fe置换增加了磁矩和居里温度。除基于Sm和Pr的化合物外,Fe原子的存在不会提高矫顽力。 (5)随着系列指数n的增加,每个同系物中Fe的最大夹杂量系统地减小。 (6)添加Zr增加了化合物系列的矫顽力。基于稀土铁硼化物的无钴无sa永磁材料的性能可总结如下:(1)Fe-Pr-B系统中的磁相具有原始的四方晶格(a = 0.886) ,c = 1.224nm)。它表现出高磁晶各向异性,沿着001的单个易轴。 Fe-La-B,Fe-Ce-B,Fe-Nd-B,Fe-Sm-B和Fe-Gd-B系统具有相同的相和可比较的性能。 (2)四方磁性硼化物的理想组成是Fe(,14)R(,2)B;它的真实组成可能是Fe(,14)R(,2)B(,1 + x),其中x是分数。 (3)四方硼化物不会完全熔化。初级铁相的量沿La(-> Pr(--->)Nd方向减少。 Ni不形成四方相。 (4)添加Co和Ni会增加硼化物的居里温度,而添加Mn会降低居里温度。 (5)我们认为,烧结Fe-Nd-B磁体对矫顽力的主要贡献是由于颗粒大小以及较小的夹杂物或缺陷结构。

著录项

  • 作者

    CHENG, SHU-FAN.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1984
  • 页码 79 p.
  • 总页数 79
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号