首页> 外文学位 >SPECTRAL-ITERATIVE ANALYSIS OF ELECTROMAGNETIC RADIATION AND SCATTERING PROBLEMS (RADAR-CROSS-SECTION, INTEGRAL EQUATION).
【24h】

SPECTRAL-ITERATIVE ANALYSIS OF ELECTROMAGNETIC RADIATION AND SCATTERING PROBLEMS (RADAR-CROSS-SECTION, INTEGRAL EQUATION).

机译:电磁辐射和散射问题(雷达横截面,积分方程)的光谱-迭代分析。

获取原文
获取原文并翻译 | 示例

摘要

Integral equations in electromagnetics typically are convolutional in nature. When the geometry of the problem permits, the unknown function can be expanded in a set of identical, evenly spaced basis functions. If the integral equation is tested in the same way, the continuous convolutions reduce to discrete convolutions. These operations can then be readily computed by the Fast-Fourier Transform algorithm resulting in a significant reduction in computer time. This spectral domain method of calculating convolutions is incorporated into an iterative algorithm to provide a numerically efficient means of solving integral equations. This thesis develops and applies two such iterative techniques.;The second iterative technique used in this thesis is the method of conjugate gradients. It is applied to resistively edge-loaded strips and plates. The scattering properties of these structures are studied in detail and their application to radar-cross-section reduction is demonstrated. The iterative nature of the conjugate gradient technique, combined with the spectral domain calculation of convolutions, allows a large number of unknowns to be handled conveniently. Results are presented which involve over 3000 unknowns.;The first technique discussed is the Spectral-Iterative Technique. This method is applied to scattering from resistive strips and from metallic strips with resistive edge loading. The scattering behavior of these structures is of importance in low radar-cross-section applications where resistive and other materials are used to reduce the scattered field. An extension of the technique is also presented which is applicable to open waveguide discontinuity problems.
机译:电磁学中的积分方程通常本质上是卷积的。当问题的几何形状允许时,未知函数可以扩展为一组相同的,均匀间隔的基础函数。如果以相同方式测试积分方程,则连续卷积将减少为离散卷积。然后可以通过Fast-Fourier变换算法轻松地计算这些操作,从而显着减少计算机时间。这种计算卷积的谱域方法被合并到迭代算法中,以提供一种数值有效的方法来求解积分方程。本文开发并应用了两种这样的迭代技术。本论文中使用的第二种迭代技术是共轭梯度法。它适用于电阻性边缘加载的带材和板材。详细研究了这些结构的散射特性,并说明了它们在减小雷达截面中的应用。共轭梯度技术的迭代性质,与卷积的谱域计算相结合,可以方便地处理大量未知数。提出了涉及3000多个未知数的结果。讨论的第一种技术是光谱迭代技术。此方法适用于从电阻条和带有电阻边缘载荷的金属条的散射。这些结构的散射行为在低雷达截面应用中很重要,在这种应用中,使用电阻性材料和其他材料来减小散射场。还提出了该技术的一种扩展,适用于开放波导不连续性问题。

著录项

  • 作者

    RAY, SCOTT LEE.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.;Remote Sensing.
  • 学位 Ph.D.
  • 年度 1984
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号