首页> 外文学位 >Phase equilibria and physical properties of core materials.
【24h】

Phase equilibria and physical properties of core materials.

机译:核心材料的相平衡和物理性质。

获取原文
获取原文并翻译 | 示例

摘要

The physical properties and phase equilibria of materials suspected to be important for Earth's core have been investigated at high pressures using the diamond anvil cell. The optical properties of iron have been derived from reflectance measurements at room temperature up to 50 GPa. There are strong changes in the optical properties associated with the bcc to hcp phase transition in iron at &sim13 GPa. The spectral emissivity of iron is a particularly important property because it appears in the equations used to measure temperature in the laser heated diamond anvil cell, and shock wave experiments. The emissivity of iron in the near infrared is a strong function of wavelength below the bcc to hcp phase transition. Above this phase transition, the infrared emissivity of iron does not have wavelength dependence, it behaves as a greybody. Temperature measurements utilizing spectroradiometry on iron samples below &sim13 GPa need to take into account the wavelength dependent emissivity of iron, or accept errors on the measured temperature as large at &sim25% or more.Investigations into the high pressure binary Fe-FeO and Fe-Fe3S phase diagrams using the laser heated diamond anvil cell in conjunction with synchrotron x-ray diffraction have been used to place constraints on the temperature and composition of Earth's core. The data suggests that oxygen is likely to preferentially partition into the liquid at the inner core boundary, while sulfur does not have a strong preference for the liquid or solid. This is an important result because it suggests that oxygen may be required in the core in order to explain the different abundances of light elements in the inner and outer cores. The melting temperatures in these systems were also measured up to &sim100 GPa for the Fe-FeO system and up to &sim150 GPa for the Fe-Fe3S system. The melting point depression with respect to pure iron is negligible in the case of adding oxygen, but a depression of 100-800 K was observed for the sulfur system. These latter temperatures are so low, that it is hard to reconcile the data with thermal models of Earth's interior. In fact, if we assume that Earth's core is iron plus 10 wt. % sulfur, the melting temperatures compared to the geothermal gradient suggest that we should have a liquid inner core and a solid outer core, exactly the opposite of what is known to be true.It is not possible to rule out some small fraction of sulfur in the core, but all of the results together suggest that oxygen is a likely component of the core, and if there is sulfur in the core, it must be in small concentrations so not to affect the melting temperatures too dramatically.
机译:怀疑对地球核心重要的材料的物理性质和相平衡已使用金刚石砧盒在高压下进行了研究。铁的光学特性来自室温下高达50 GPa的反射率测量。铁在&sim13 GPa时,从bcc到hcp相变的光学性质发生了很大变化。铁的光谱发射率是一个特别重要的特性,因为它出现在用于测量激光加热的金刚石砧室中的温度的方程式和冲击波实验中。铁在近红外中的发射率是bcc以下到hcp相变以下波长的强函数。在此相变以上,铁的红外发射率与波长无关,它表现为灰体。对于低于&sim13 GPa的铁样品,采用分光辐射法进行温度测量需要考虑到铁的波长依赖性,或者接受所测温度的误差为&sim25%或更高的大误差。通过使用激光加热的金刚石砧盒与同步加速器X射线衍射相结合的相图,已对地核的温度和组成施加了限制。数据表明,氧很可能在内核边界处优先分配到液体中,而硫对液体或固体的选择并不强烈。这是一个重要的结果,因为它表明可能需要在芯中使用氧气以解释内芯和外芯中轻元素的不同丰度。在这些系统中,对于Fe-FeO系统,其熔融温度也高达&sim100 GPa,对于Fe-Fe3S系统也高达&sim150 GPa。在添加氧气的情况下,相对于纯铁的熔点降低可以忽略不计,但是对于硫系统,观察到100-800 K的降低。后者的温度如此之低,以至于很难将数据与地球内部的热模型进行核对。实际上,如果我们假设地球的核心是铁加10 wt。相对于地热梯度而言,熔化温度为%硫,这表明我们应该有一个液态内核和一个固态外核,这与已知的事实完全相反。不可能排除其中的一小部分硫核心,但所有结果共同表明,氧可能是核心的组成部分,如果核心中存在硫,则其浓度必须很小,以免对熔融温度产生太大影响。

著录项

  • 作者

    Seagle, Christopher T.;

  • 作者单位

    The University of Chicago.;

  • 授予单位 The University of Chicago.;
  • 学科 Geology.Geochemistry.Geophysics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 宗教;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号