首页> 外文学位 >Getting to the point: Bridging the gap between simple and complex catalytic systems using Temporal Analysis of Products (TAP).
【24h】

Getting to the point: Bridging the gap between simple and complex catalytic systems using Temporal Analysis of Products (TAP).

机译:切入点:使用产品时间分析(TAP)弥合简单催化系统与复杂催化系统之间的差距。

获取原文
获取原文并翻译 | 示例

摘要

One of the key issues in the field of catalysis is to relate the catalyst structure/composition to its activity/selectivity. One way to understand this relationship is to understand the individual role each catalyst component plays in the chemical reaction. Industrial catalysts can be extremely complex in structure and to understand their reaction kinetics, researchers often study simpler surfaces such as single crystals using surface science techniques. This introduces a well-known problem in the field of catalysis commonly referred to as the "pressure and materials gap." Typically, industrial catalyst research is performed under process conditions, which means operating pressures of one atmosphere or higher. Under these conditions, it is difficult to extract intrinsic kinetic properties of the catalyst which are properties that are directly related to the catalyst structure and composition. To find these intrinsic kinetic properties, scientists turn to surface science techniques using different types of spectroscopic tools to study reaction properties on single crystal surfaces under ultra-high vacuum (UHV) conditions. Experiments using single crystals and surface science techniques have helped establish that some crystal planes are more active and/or selective than others. Although surface science approaches are successful in obtaining fundamental information on a variety of catalytic reactions on the atomic level, current catalytic reactions are still carried out under atmospheric pressures or greater and on much more complex materials than single crystal surfaces.;This dissertation introduces a new approach to characterize catalysts that vary in compositional/structural complexity in order to understand their performance in a conventional reactor/reaction environment under both atmospheric pressure and ultra-high vacuum conditions. Experiments performed under both pressure regimes were carried out using the same apparatus, the Temporal Analysis of Products (TAP) reactor. The catalysts under investigation are bulk transition metals (Pt), transition metals deposited on metal oxide supports (Pt/SiO2), and mixed metal oxides (VPO). The catalysts are applied to two types of reaction systems, CO oxidation and selective oxidation of hydrocarbons. The goal of the experiments is to understand and distinguish the role of each component of the catalyst during chemical reaction. Using the TAP reactor, the number of active sites, reaction mechanisms, adsorption/desorption rate constants, and rates of reaction can be determined.
机译:催化领域的关键问题之一是使催化剂的结构/组成与其活性/选择性相关。理解这种关系的一种方法是了解每种催化剂组分在化学反应中所起的单独作用。工业催化剂的结构可能极其复杂,并且为了了解其反应动力学,研究人员经常使用表面科学技术研究较简单的表面,例如单晶。这在催化领域中引入了众所周知的问题,通常称为“压力和材料间隙”。通常,工业催化剂的研究是在工艺条件下进行的,这意味着一种或更高的工作压力。在这些条件下,难以提取与催化剂结构和组成直接相关的性质的催化剂固有动力学性质。为了找到这些固有的动力学特性,科学家们转向表面科学技术,使用不同类型的光谱工具研究超高真空(UHV)条件下单晶表面上的反应特性。使用单晶和表面科学技术进行的实验有助于确定某些晶面比其他晶面更具活性和/或选择性。尽管表面科学方法成功地获得了有关原子级各种催化反应的基本信息,但当前的催化反应仍在大气压或更高的压力下以及比单晶表面复杂得多的材料上进行。该方法用于表征组成/结构复杂性不同的催化剂,以了解其在大气压和超高真空条件下在常规反应器/反应环境中的性能。使用相同的设备(产品时间分析(TAP)反应器)在两种压力条件下进行的实验。研究中的催化剂为本体过渡金属(Pt),沉积在金属氧化物载体上的过渡金属(Pt / SiO2)和混合金属氧化物(VPO)。该催化剂应用于两种类型的反应系统,CO氧化和碳氢化合物的选择性氧化。实验的目的是理解和区分催化剂各成分在化学反应过程中的作用。使用TAP反应器,可以确定活性位点的数量,反应机理,吸附/解吸速率常数和反应速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号