首页> 外文学位 >A design and analysis approach for drag reduction on aircraft with adaptive lifting surfaces.
【24h】

A design and analysis approach for drag reduction on aircraft with adaptive lifting surfaces.

机译:一种具有自适应升力面的飞机减阻设计和分析方法。

获取原文
获取原文并翻译 | 示例

摘要

Adaptive lifting surfaces, which can be tailored for different flight conditions, have been shown to be beneficial for drag reduction when compared with conventional non-adaptive surfaces. Applying multiple trailing-edge flaps along the wing span allows for the redistribution of lift to suit different flight conditions. The current approach uses the trailing-edge flap distribution to reduce both induced- and profile- components of drag with a trim constraint. Induced drag is reduced by optimally redistributing the lift between the lifting surfaces and along the span of each surface. Profile drag is reduced through the use of natural laminar flow airfoils, which maintain distinct low-drag-ranges (drag buckets) surrounding design lift values. The low-drag-ranges can be extended to include off-design values through small flap deflections, similar to cruise flaps. Trim is constrained for a given static margin by considering longitudinal pitching moment contributions from changes in airfoil section due to individual flap deflections, and from the redistribution of fore-and-aft lift due to combination of flap deflections. The approach uses the concept of basic and additional lift to linearlize the problem, which allows for standard constrained-minimization theory to be employed for determining optimal flap-angle solutions. The resulting expressions for optimal flap-angle solutions are presented as simple matrix equations.;This work presents a design and analysis approach which is used to produce flap-angle solutions that independently reduce induced, profile, and total drag. Total drag is defined to be the sum of the induced- and profile-components of drag. The general drag reduction approach is adapted for each specific situation to develop specific drag reduction schemes that are applied to single- and multiple-surface configurations. Successful results show that, for the application of the induced drag reduction schemes on a tailless aircraft, near-elliptical lift distributions are produced which match the classical result for minimum induced drag. Application of the profile drag reduction schemes produce solutions which force the wing to operate in the low-drag-ranges of the natural-laminar-flow airfoil sections, thereby lowering profile drag. The total drag reduction schemes use a curve-fit routine that generates airfoil drag polars given flap angle and Reynolds number. The approximated drag polars allow the prediction of profile drag values to be combined with induced drag values to form a total drag function, which is utilized with a constrained nonlinear optimizer that determines best flap angles for total drag and trim. The different drag reduction schemes each produce independent flap-angle solutions and lift distributions for a given aircraft configuration and operating condition, and provide valuable insight for aerodynamic design and trade studies. The drag reduction approach is intended to be applicable to arbitrary aircraft configurations, and can be adapted to use surface incidence, twist, and flap angles as optimization variables, thereby creating a powerful and flexible aerodynamic design and analysis tool.
机译:与传统的非自适应表面相比,可以针对不同的飞行条件量身定制的适应性提升表面对于减少阻力很有帮助。沿机翼跨度使用多个后缘襟翼可以重新分配升力,以适应不同的飞行条件。当前的方法使用后缘襟翼分布来减少具有修剪约束的阻力的诱导分量和轮廓分量。通过在提升表面之间以及沿着每个表面的跨度最佳地重新分配提升力,可以减少感应阻力。通过使用自然层流翼型来减少轮廓阻力,该翼型保持围绕设计升力值的明显的低阻力范围(阻力斗)。低阻力范围可以通过较小的襟翼挠度扩展到包括偏离设计的值,类似于巡航襟翼。对于给定的静态裕度,通过考虑纵向俯仰力矩的贡献来限制修剪,该纵向俯仰力矩的贡献是由于单个襟翼偏斜引起的机翼截面变化,以及由于襟翼偏斜的组合引起的前后升力的重新分布。该方法使用基本升力和附加升力的概念来线性化问题,从而允许采用标准约束最小化理论来确定最佳襟翼角度解。最佳襟翼角解的结果表达式以简单矩阵方程式表示。这项工作提出了一种设计和分析方法,该方法用于产生襟翼角解,从而独立地减小了诱导,轮廓和总阻力。总阻力定义为阻力的诱导分量和轮廓分量之和。通用减阻方法适用于每种特定情况,以开发适用于单表面和多表面配置的特定减阻方案。成功的结果表明,对于诱导减阻方案在无尾飞机上的应用,产生了近似于椭圆的升力分布,该分布与最小的诱导减阻的经典结果相匹配。轮廓阻力减小方案的应用产生了迫使机翼在自然层流翼型截面的低阻力范围内运行的解决方案,从而降低了轮廓阻力。总减阻方案使用曲线拟合例程,该例程在给定襟翼角度和雷诺数的情况下生成机翼阻力极。近似的阻力极点可使轮廓阻力值的预测与感应阻力值相结合以形成总阻力函数,该约束函数可与约束非线性优化器配合使用,该非线性优化器为总阻力和修剪确定最佳襟翼角度。不同的减阻方案各自针对给定的飞机配置和运行条件产生独立的襟翼角解和升力分布,并为空气动力学设计和贸易研究提供宝贵的见解。减阻方法旨在适用于任何飞机配置,并且可以调整为使用表面入射角,扭曲角和襟翼角作为优化变量,从而创建强大而灵活的空气动力学设计和分析工具。

著录项

  • 作者

    Cusher, Aaron Anthony.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:37:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号