首页> 外文学位 >System-level power, thermal and reliability optimization.
【24h】

System-level power, thermal and reliability optimization.

机译:系统级电源,散热和可靠性优化。

获取原文
获取原文并翻译 | 示例

摘要

An integrated circuit can now contain more than one billion transistors. With increasing system integration and technology scaling, power and power-related issues have become the primary challenges of integrated circuit design. In this dissertation, techniques and algorithms, from system-level synthesis to emerging integration and device technologies, are proposed to address the power and power-induced thermal and reliability challenges of modern billion-transistor integrated circuit design. In Chapter 1, the challenges of semiconductor technology scaling are introduced. Chapter 2 reviews the related works. Chapter 3 focuses on the reliability optimization issue during system-level design. A reliable application-specific multiprocessor system-on-chip synthesis system is proposed, called TASR, which exploits redundancy and thermal-aware design planning to produce reliable and compact circuit designs. Chapter 4 introduces three-dimensional (3D) integration, a new integrated circuit fabrication and integration technology. Thermal issue is a primary concern of 3D integration. A 3D integrated circuit heat flow analytical framework is proposed in this chapter. Proactive, continuously-engaged hardware and operating system thermal management techniques are presented and evaluated which optimize system performance than state-of-the-art techniques while honoring the same temperature bound. Chapter 5 presents reconfigurable architecture design using single-electron tunneling transistor, an ultra-low-power nanometer-scale device. The proposed design has the potential to overcome the power and energy barriers for both high-performance computing and ultra-low-power embedded systems. Conclusions are drawn in Chapter 6.
机译:集成电路现在可以包含超过十亿个晶体管。随着系统集成度和技术规模的不断提高,电源和电源相关问题已成为集成电路设计的主要挑战。本文提出了从系统级综合到新兴的集成和器件技术的技术和算法,以解决现代十亿晶体管集成电路设计中功率和功率引起的热和可靠性挑战。在第一章中,介绍了半导体技术扩展的挑战。第2章回顾了相关工作。第3章重点讨论系统级设计期间的可靠性优化问题。提出了一种可靠的专用多处理器片上系统综合系统,称为TASR,该系统利用冗余和热感知设计规划来产生可靠而紧凑的电路设计。第4章介绍了三维(3D)集成,这是一种新的集成电路制造和集成技术。散热问题是3D集成的主要问题。本章提出了3D集成电路热流分析框架。提出并评估了主动,持续参与的硬件和操作系统热管理技术,这些技术在保证相同温度范围的同时,比最先进的技术优化了系统性能。第5章介绍了使用单电子隧穿晶体管(一种超低功耗纳米级器件)的可重构体系结构设计。拟议的设计有可能克服高性能计算和超低功耗嵌入式系统的功率和能量障碍。结论在第6章中得出。

著录项

  • 作者

    Zhu, Changyun.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号