首页> 外文学位 >Semi-synthetic proteins for catalytic and analytical applications.
【24h】

Semi-synthetic proteins for catalytic and analytical applications.

机译:用于催化和分析应用的半合成蛋白质。

获取原文
获取原文并翻译 | 示例

摘要

Proteins have evolved over millions of years to serve a plethora of highly specialized functions in biological systems. Given the enormous diversity in structure and function, it is truly surprising that only 20 different amino acids are utilized as the building blocks of proteins. Furthermore, only a small set of metal cations that are biologically available are used as structural or catalytically active cofactors in proteins, whereas rare metal cations such as platinum, ruthenium or rhodium remain absent. In the 20th century myriad catalysts, based on non-biological transition metals, emerged that can facilitate numerous organic transformations. The goal of my thesis was to introduce new functions into proteins by attaching platinum metals and fluorescent metal sensors. Thus, semi-synthetic proteins for catalytic and analytical applications were generated.;Chapter I provides the background for the generation and development of semi-synthetic proteins for catalytic and analytical applications. This chapter also provides background about challenges in sustainable chemistry, water as a reaction medium for organic reactions and catalysis, the role of copper, iron, and zinc ions in biology, small molecule fluorescent probes for visualization of biologically relevant metals and fluorescent proteins as tools for cellular imaging. Chapter II and III focus on semi-synthetic proteins for catalytic applications while chapter IV focuses on their analytical applications.;The replacement of organic solvents by environmentally benign solvents such as water is an imperative step towards achieving "green chemistry". The combination of small molecule catalysts with proteins may introduce new functions and take advantage of the benefits of "both worlds" while avoiding their potential drawbacks. Therefore semi-synthetic catalysts were developed for enantioselective organic reactions in aqueous medium.;Chapter II discusses the design, development and characterization of a suitable reaction, reaction conditions and catalytic system for later utilization in a semi-synthetic protein. Ruthenium porphyrins catalyzed cyclopropanation reactions with fair yields and high stereoselectivity in aqueous medium. The successful reaction in water was a crucial requirement for a catalytically active semi-synthetic protein. Mechanistic studies did not elucidate the actual catalytic species for the formation of the cyclopropanation product and the side-product diethyl maleate; however, new insights were gained from the analysis of potential reaction pathways. Moreover, studies of the influence of axial ligands, resembling likely residues coordinating to the ruthenium metal center in the active site of a semi-synthetic protein, on the carbene formation of ruthenium porphyrins illustrated that coordination of axial ligands may inhibit the catalytic activity.;In chapter III, the generation of ruthenium porphyrin based semi-synthetic proteins and their subsequent catalysis of cyclopropanation reactions is discussed. Myoglobin and myoglobin mutants were successfully reconstituted with a heme-like ruthenium carbonyl porphyrin; however, none of the formed semi-synthetic proteins catalyzed the enantioselective cyclopropanation of styrene. Efforts to determine the reconstitution efficiency of the generated semi-synthetic were hampered by problems to purify the generated semi-synthetic proteins that are probably due to non-specific binding of the ruthenium porphyrin to the protein surface.;The exploration of labile metal pools of the biologically relevant transition metals copper, iron and zinc in cells was the goal of developing semi-synthetic proteins for analytical applications. Combining fluorescent proteins with colored or fluorescent metal chelators by forming semi-synthetic proteins allows taking advantage of their beneficial properties while avoiding their downsides. This design offers an attractive platform for in vivo metal sensing.;Chapter IV discusses the design and generation of semi-synthetic proteins for analytical applications. Plasmids encoding fluorescent proteins, targeting sequences and AGT or intein fusion domains (necessary for labeling) for eukaryotic and prokaryotic expression were generated. The targeting of intracellular compartments (mitochondria, nucleus and TGN) was successful (confirmed by light microscopy experiments with transfected mammalian cells). In vitro labeling experiments of expressed and purified fusion proteins with rhodamine derivatives succeeded with AGT based fusion proteins; however, labeling of fusion proteins by trans-splicing with split-inteins failed. A zinc(II)-chelator was attached to an AGT based protein and the resulting semi-synthetic protein exhibited strong changes of fluorescence in the presence of zinc(II). This represents an important step towards the goal of in vivo cell imaging of labile zinc(II) pools. Iron chelators suitable for protein-labeling could not be synthesized. Despite extensive efforts, all attempts failed to generate a chelator that forms Cu(I)-complexes with the 1:1 stochiometry (ligand:metal) that is necessary for metal sensing with semi-synthetic proteins.
机译:蛋白质已经进化了数百万年,可以在生物系统中发挥多种高度专门化的功能。考虑到结构和功能的巨大差异,真正令人惊讶的是,只有20种不同的氨基酸被用作蛋白质的基础。此外,仅一小部分可生物利用的金属阳离子可用作蛋白质中的结构或催化活性辅因子,而稀有金属阳离子(如铂,钌或铑)仍然不存在。在20世纪,出现了许多基于非生物过渡金属的催化剂,可以促进许多有机转化。本文的目的是通过连接铂金属和荧光金属传感器将新功能引入蛋白质。因此,产生了用于催化和分析应用的半合成蛋白质。第一章为用于催化和分析应用的半合成蛋白质的产生和发展提供了背景。本章还提供了以下方面的背景知识:可持续化学的挑战,水作为有机反应和催化的反应介质,铜,铁和锌离子在生物学中的作用,用于可视化生物学相关金属和荧光蛋白作为工具的小分子荧光探针用于细胞成像。第二章和第三章重点介绍用于催化应用的半合成蛋白质,而第四章重点介绍其分析应用。;用环境友好的溶剂(例如水)代替有机溶剂是实现“绿色化学”的必不可少的步骤。小分子催化剂与蛋白质的结合可能会引入新的功能,并利用“两个世界”的优势,同时避免其潜在的弊端。因此,开发了用于在水介质中进行对映选择性有机反应的半合成催化剂。第二章讨论了合适的反应,反应条件和催化体系的设计,开发和表征,以用于以后在半合成蛋白中的应用。钌卟啉催化环丙烷化反应,在水性介质中具有高收率和高立体选择性。在水中成功进行反应是催化活性半合成蛋白的关键要求。机理研究并未阐明形成环丙烷化产物和副产物马来酸二乙酯的实际催化种类。然而,从潜在反应途径的分析中获得了新的见解。此外,研究轴向配体对钌卟啉卡宾形成的影响,类似于在半合成蛋白活性位点上与钌金属中心配位的可能残基,说明轴向配体的配位可能抑制催化活性。在第三章中,讨论了基于卟啉钌的半合成蛋白的产生及其随后对环丙烷化反应的催化作用。用血红素样钌羰基卟啉成功地重组了肌红蛋白和肌红蛋白突变体。然而,形成的半合成蛋白均没有催化苯乙烯的对映选择性环丙烷化。确定产生的半合成蛋白的重组效率的努力因纯化产生的半合成蛋白的问题而受到阻碍,这可能是由于钌卟啉与蛋白表面的非特异性结合所致。细胞中与生物有关的过渡金属铜,铁和锌是开发用于分析应用的半合成蛋白质的目标。通过形成半合成蛋白将荧光蛋白与有色或荧光金属螯合剂结合在一起,可以利用其有益特性,同时避免其不利之处。该设计为体内金属感测提供了一个有吸引力的平台。第四章讨论了用于分析应用的半合成蛋白的设计和产生。产生了编码用于真核和原核表达的荧光蛋白,靶向序列和AGT或内含肽融合域(标记必需)的质粒。细胞内区室(线粒体,细胞核和TGN)的靶向成功(通过转染哺乳动物细胞的光学显微镜实验证实)。基于罗丹明衍生物的表达和纯化融合蛋白的体外标记实验成功地用于基于AGT的融合蛋白。然而,通过用分裂内含子进行反式剪接来标记融合蛋白失败。锌(II)螯合剂连接到基于AGT的蛋白质上,并且在锌(II)存在下,所得的半合成蛋白质显示出强烈的荧光变化。这代表朝着不稳定的锌(II)库的体内细胞成像目标迈出的重要一步。无法合成适合蛋白质标记的铁螯合剂。尽管付出了巨大的努力,但所有尝试均未能产生一种螯合剂,该螯合剂可形成具有1:1化学计量比(配体:金属)的Cu(I)络合物,这对于用半合成蛋白质进行金属感测是必需的。

著录项

  • 作者

    Huttinger, Karl J.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Chemistry Biochemistry.;Chemistry Inorganic.;Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 258 p.
  • 总页数 258
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号