首页> 外文学位 >MAGNETOHYDRODYNAMIC (MHD) SIMULATION OF SOLAR PROMINENCE FORMATION.
【24h】

MAGNETOHYDRODYNAMIC (MHD) SIMULATION OF SOLAR PROMINENCE FORMATION.

机译:太阳突出地层的磁氢动力(MHD)模拟。

获取原文
获取原文并翻译 | 示例

摘要

In this work, the formation of Kippenhahn-Schluter type solar prominences by chromospheric mass injection is studied via numerical simulation. The numerical model is based on a two-dimensional, time-dependent magnetohydrodynamic (MHD) theory. In addition, an analysis of gravitational thermal MHD instabilities related to condensation is performed by using the small perturbation method.;The conclusions are: (1) Both quiescent and active region prominences can be formed by chromospheric mass injection, provided certain optimum conditions are satisfied. The existence of these optimum conditions may explain why prominences do not appear on every neutral line. (2) Quiescent prominences cannot be formed without condensation, though enough mass is supplied from chromosphere. The mass of a quiescent prominence is composed of both the mass injected from the chromosphere and the mass condensed from the corona. On the other hand, condensation is not important to active region prominence formation. Active region prominences can be formed directly by injection of cool dense chromospheric mass. (3) In addition to channelling and supporting effects, the magnetic field plays another important role, i.e. containing the prominence material. A pit type magnetic field geometry has to be formed at the apex of the flux loop before the formation of the prominence. If the magnetic field is so strong that a pit cannot be formed at the apex before the cool dense material appears there, we will see the disappearance of prominence (in the quiescent prominence case) or the disappearance of the absorptive strands (in the active region prominence case). (4) In the model cases, prominences are supported by the Lorentz force, the gas pressure gradient and the mass injection momentum. The Lorentz force is the essential one. The support is of a dynamic nature. (5) Due to gravity, more MHD condensation instability modes appear in addition to the basic condensation mode. Among the additional modes, for example, is the Rayleigh - Taylor type mode. The growth rate of these modes is inversely proportional to the horizontal magnetic field strength.
机译:在这项工作中,通过数值模拟研究了通过色球物质注入形成的Kippenhahn-Schluter型太阳突出。数值模型基于二维的时间相关的磁流体动力学(MHD)理论。此外,采用小扰动方法对与凝结有关的重力热磁流体动力学不稳定性进行了分析。结论:(1)在满足一定的最佳条件的前提下,通过色球注入可以形成静止区和活动区。 。这些最佳条件的存在可能解释了为什么没有在每条中性线上都出现突出。 (2)尽管色球提供了足够的质量,但没有凝结就无法形成静态突出。静止突起的质量既包括从色球层注入的质量,又包括从电晕冷凝的质量。另一方面,凝结对于活性区域突出的形成并不重要。可以通过注入冷致密的色球物质直接形成有效区域的突出部分。 (3)除了引导和支撑作用外,磁场还起着另一个重要作用,即包含突出材料。在形成突起之前,必须在磁通回路的顶点处形成凹坑型磁场几何形状。如果磁场是如此之强,以致在冷致密物质出现之前在顶点处无法形成凹坑,我们将看到凸起的消失(在静态凸起的情况下)或吸收性链的消失(在活动区域​​中)突出案例)。 (4)在模型情况下,突出点由洛伦兹力,气压梯度和质量注入动量支持。洛伦兹部队是必不可少的。支持是动态的。 (5)由于重力作用,除了基本的冷凝模式外,还会出现更多的MHD冷凝不稳定性模式。在其他模式中,例如,瑞利-泰勒类型模式。这些模式的增长率与水平磁场强度成反比。

著录项

  • 作者

    BAO, JINJUN.;

  • 作者单位

    The University of Alabama in Huntsville.;

  • 授予单位 The University of Alabama in Huntsville.;
  • 学科 Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 1987
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TS97-4;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号