首页> 外文学位 >Multi-probe experimental and 'bottom-up' computational analysis of correlated defect generation in modern nanoscale transistors.
【24h】

Multi-probe experimental and 'bottom-up' computational analysis of correlated defect generation in modern nanoscale transistors.

机译:现代纳米级晶体管中相关缺陷产生的多探针实验和“自下而上”的计算分析。

获取原文
获取原文并翻译 | 示例

摘要

As transistors are getting smaller, it has become increasingly difficult to achieve requisite device performance for new generations of ICs. Two approaches are being considered: Replacing Si-SiO2 transistors with higher performance III-V transistors, or operating the classical transistors close to their reliability limits.;In the first part of the thesis, we consider the problem of interface defects with various combinations of gate oxides and substrate materials. We use a combination of characterization techniques to profile the interface and bulk defects in both position and energy, and also to understand how the defect charge level changes with its occupation probability. This multi-probe analysis is necessary to differentiate between the acceptor- and donor-like defects and to obtain an accurate estimate of the defect densities. We show that the nature of the defect (acceptor-like vs. donor-like) at In 0.65Ga0.35As/Al2O3 interface plays a significant role in determining whether surface inversion is possible for these novel transistor structures.;In the second part, we consider the problem of reliability close to the physical limit where classical perspectives must be supplemented by 'bottom-up' considerations. The reliability studies are traditionally carried out as stand-alone analysis at specific operating bias conditions like NBTI, HCI, and TDDB. The defect generation at various bias conditions however depends on parameters like carrier densities, process conditions, material properties etc., and therefore should be a part of the reliability analysis. As a specific example to the general "bottom-up" approach we propose, we study the non-classical OFF-state degradation in Drain Extended MOS (DeMOS) transistors. These transistors show correlated parameter degradation and dielectric breakdown when biased in OFF-state conditions (VG=0V, |VD |>5V) and as such defy classical reliability classification. We show that the OFF-state degradation in DeMOS transistors is due to interfacial ≡Si"YO bonds broken by hot carriers generated from band-to-band tunneling followed by impact ionization. The resultant degradation exhibits a unique scaling law, which enables accurate lifetime extrapolation based on short term measurements. The saturating nature of the degradation curve is explained based on bond-dispersion (B-D) model, which assigns a finite spread to the ≡Si---O bond energy within the amorphous SiO2. OFF-state TDDB is shown to be due to ≡Si---O bonds broken in the bulk of the oxide by exactly identical mechanism, and is therefore shown to correlate with interface damage. The breakdown statistics of the OFF-state TDDB is consistently explained based on asymmetric percolation model. The generalized approach thus explains the correlated degradation in DeMOS transistors and significantly reduces the characterization time and cost.;The above framework to analyze non-classical OFF-state degradation is however general and is not limited to a specific operating condition or device structure. We therefore analyzed ON-state hot carrier degradation in DeMOS transistors based on the "bottom-up" approach and verified that the basic degradation mechanism and features of OFF-state degradation remain invariant in spite of the orders of magnitude increase in drain current. We also studied ON-state degradation in logic transistors from various technology nodes, and remarkably the universality of hot carrier degradation is shown to be valid even for the ultra-scaled transistors operating at much lower operating biases. Classical hot carrier models cannot be used to analyze hot carrier degradation in these ultra-scaled transistors as the substrate current is contaminated by excessive gate leakage. Instead, we demonstrate how the universality of hot carrier degradation can be used to perform fast and accurate hot carrier lifetime extrapolation based on short-term measurements.;Our multi-probe experimental and "bottom-up" computational approach thus provides new insights into the defect generation at oxide/substrate interface and provides a model independent methodology for hot carrier lifetime extrapolation.
机译:随着晶体管变得越来越小,实现新一代IC所需的器件性能变得越来越困难。正在考虑两种方法:用性能更高的III-V晶体管替换Si-SiO2晶体管,或在接近其可靠性极限的情况下操作经典晶体管。在本文的第一部分,我们考虑了各种缺陷的组合对界面缺陷的影响。栅极氧化物和衬底材料。我们使用表征技术的组合来描述界面和大量缺陷的位置和能量,并了解缺陷电荷水平如何随其占据概率而变化。这种多探针分析对于区分受体样缺陷和供体样缺陷以及获得缺陷密度的准确估计是必要的。我们表明,In 0.65Ga0.35As / Al2O3界面处的缺陷性质(受体样与供体样)在确定这些新型晶体管结构是否可能发生表面反转方面起着重要作用。第二部分,我们认为可靠性问题接近物理极限,在经典极限中必须以“自下而上”的考虑来补充可靠性。传统上,可靠性研究是在NBTI,HCI和TDDB等特定操作偏差条件下作为独立分析进行的。但是,在各种偏置条件下产生的缺陷取决于诸如载流子密度,工艺条件,材料特性等参数,因此应成为可靠性分析的一部分。作为我们提出的一般“自下而上”方法的一个具体示例,我们研究了漏极扩展MOS(DeMOS)晶体管中的非经典OFF状态退化。当在截止状态条件下(VG = 0V,| VD |> 5V)偏置时,这些晶体管会表现出相关的参数劣化和介电击穿,这违背了经典的可靠性分类。我们表明,DeMOS晶体管的截止状态劣化是由于界面≡Si“ YO键被带间隧穿和随后的碰撞电离所产生的热载流子破坏所致。由此产生的劣化表现出独特的缩放定律,从而实现了精确的寿命基于键-色散(BD)模型解释了降解曲线的饱和特性,该模型为无定形SiO2中的--Si --- O键能量分配了有限的扩散。由于完全相同的机理,表明mechanismSi --- O键在大部分氧化物中断裂,因此表明它与界面损伤有关。渗流模型;因此,通用方法可以解释DeMOS晶体管的相关退化,并显着减少表征时间和成本。然而,使用是普遍的,并且不限于特定的操作条件或设备结构。因此,我们基于“自下而上”的方法分析了DeMOS晶体管的导通状态热载流子退化,并验证了尽管漏极电流增加了几个数量级,但基本的退化机理和关断状态的退化特性仍保持不变。我们还研究了来自各种技术节点的逻辑晶体管的导通状态退化,并且值得注意的是,热载流子退化的普遍性也被证明是有效的,即使对于在低得多的工作偏置下运行的超大规模晶体管也是如此。经典的热载流子模型不能用于分析这些超规模晶体管中的热载流子退化,因为衬底电流被过多的栅极泄漏污染。取而代之的是,我们演示了如何根据短期测量结果使用热载流子降解的普遍性来执行快速,准确的热载流子寿命外推。;我们的多探针实验和“自下而上”的计算方法因此提供了新的见解在氧化物/衬底界面处产生缺陷,并为热载流子寿命外推提供了独立于模型的方法。

著录项

  • 作者

    Varghese, Dhanoop.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号