首页> 外文学位 >Characterizing, modeling and mitigating microarchitecture vulnerability and variability in light of small-scale processing technology.
【24h】

Characterizing, modeling and mitigating microarchitecture vulnerability and variability in light of small-scale processing technology.

机译:根据小规模处理技术,表征,建模和缓解微体系结构的脆弱性和可变性。

获取原文
获取原文并翻译 | 示例

摘要

The rapidly increased soft error rate (SER) due to the scaled processing technology is one of the critical reliability concerns in current processor design. In order to characterize and mitigate the microarchitecture soft-error vulnerability in modern superscalar and multithreaded processors, I developed Sim-SODA (Software Dependability Analysis), a unified framework for estimating microprocessor reliability in the presence of soft errors at the architectural level. By using Sim-SODA, I observed that a single performance metric is not a good indicator for program vulnerability; on the other hand, a combination of several performance metrics can well predict the architecture-level soft-error vulnerability. Based on the observation that issue queue (IQ) is a reliability hot-spot on Simultaneous Multithreaded (SMT) processors, I proposed VISA (Vulnerable InStruction Aware) Issue and ORBIT (Operand Readiness Based InsTruction) dispatch to improve the IQ reliability. I further combined the circuit and microarchitecture techniques in soft error robustness on SMT processors to leverage the advantage of the two levels' techniques while overcoming the disadvantage of both. Results show that my proposed techniques have strong ability in improve IQ reliability with negligible performance penalty.;As one of the nano-scale design challenges, process variation (PV) significantly affects chip performance and power. I characterized the microarchitecture soft error vulnerability in the presence of PV, and proposed two techniques that work at fine-grain and coarse-grain levels to mitigate the impact of PV mitigation techniques on reliability and maintain optimal vulnerability, performance, and power trade-offs. Negative Body Temperature Instability (NBTI) has become another important reliability concern as processing technology scaled down. Observing that PV has both positive and negative effects on circuits, I took advantage of the positive effects in NBTI tolerant microarchitecture design to efficiently mitigate the detrimental impact of PV and NBTI simultaneously. The trend towards multi-/many-core design has made network-on-chip (NoC) a crucial hardware component of future microprocessors. I proposed several techniques that hierarchically mitigate the PV and NBTI effect on NoC while leveraging their benign interplay.
机译:由于规模化的处理技术而导致的快速增加的软错误率(SER)是当前处理器设计中至关重要的可靠性问题之一。为了表征和缓解现代超标量和多线程处理器中的微体系结构软错误漏洞,我开发了Sim-SODA(软件可靠性分析),这是一个统一的框架,用于在体系结构级别存在软错误时评估微处理器的可靠性。通过使用Sim-SODA,我观察到单个性能指标并不是程序漏洞的一个很好的指标。另一方面,几个性能指标的组合可以很好地预测体系结构级别的软错误漏洞。基于观察到问题队列(IQ)是同步多线程(SMT)处理器上的可靠性热点,我提出了VISA(易受攻击的指令识别)问题和ORBIT(基于操作准备的InsTruction)调度,以提高IQ可靠性。我进一步将电路和微体系结构技术与SMT处理器的软错误鲁棒性相结合,以利用两个级别的技术的优势,同时克服两者的缺点。结果表明,我提出的技术在提高IQ可靠性方面具有很强的能力,而对性能的影响却可以忽略不计。作为纳米级设计挑战之一,工艺变化(PV)会显着影响芯片性能和功耗。我对存在PV的微体系结构软错误漏洞进行了表征,并提出了两种可在细粒度和粗粒度级别工作的技术,以减轻PV缓解技术对可靠性的影响,并保持最佳的脆弱性,性能和功率折衷。随着加工技术规模的缩小,负体温不稳定性(NBTI)已成为另一个重要的可靠性问题。观察到PV对电路既有正面影响又有负面影响,我利用NBTI耐性微体系结构设计中的正面影响来有效地同时减轻了PV和NBTI的有害影响。多核/多核设计的趋势使片上网络(NoC)成为未来微处理器的关键硬件组件。我提出了几种技术,可利用它们的良性相互作用来逐步减轻PV和NBTI对NoC的影响。

著录项

  • 作者

    Fu, Xin.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Electronics and Electrical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号