首页> 外文学位 >Role of nicotinic acetylcholine receptor subunits alpha9 and alpha10 and calcium activated potassium channel SK2 in the development and molecular organization of the olivocochlear synapse.
【24h】

Role of nicotinic acetylcholine receptor subunits alpha9 and alpha10 and calcium activated potassium channel SK2 in the development and molecular organization of the olivocochlear synapse.

机译:烟碱乙酰胆碱受体亚基α9和α10和钙激活钾通道SK2在少突触突触的发育和分子组织中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The olivocochlear (OC) synapse between the medial efferent fibers originating in the brain stem and cochlear outer hair cells (OHCs) is responsible for modulating the cochlea's response to incoming sound. The OC synapse is primarily cholinergic, and uses calcium permeable excitatory nicotinic acetylcholine receptor (nAChR) composed of alpha9 and alpha10 subunits to activate a hyperpolarizing potassium current in hair cells mediated by SK2, a small conductance calcium activated potassium channel. The functional coupling between the excitatory nAChR and the inhibitory SK2 channel defines the OC-mediated postsynaptic response of OHCs.;Genetic ablation of the alpha9 or alpha10 nAChR subunits, or the SK2 channel results in abnormal development of OC synaptic terminals contacting the OHCs, accompanied by loss of nicotinic activity. Genetic manipulation of the alpha9alpha10 nAChRs and SK2 channels has helped define the role of OC innervation with respect to both OHC electrophysiology and protection against noise-induced trauma. However, null mutation of these genes has also revealed an unexpected developmental role in OC synapse formation and maintenance.;The work described in this thesis reveals that the functional coupling between nAChR and SK2 activity is required for the development and maintenance of OC synapse innervation and structure. Using transgenic mouse models that lack the genes encoding nAChR subunits alpha9 or alpha10, or the SK2 channel, I demonstrate that, while alpha9 and alpha10 nAChR-mediated activity plays an essential role in regulating the spatiotemporal development and stabilization of OC innervation on OHC during early postnatal ages, SK2 channel activity is required for the survival of the OC synapse on the OHCs during late postnatal stages of cochlear development in mice. Loss of SK2-medated OC activity results in degeneration of the OC terminals beginning at approximately 3 weeks of age that is complete by 12 weeks.;In addition, work described here defines a role for alpha9alpha10 nAChRs in the regulation of protein expression related to the OC synapses in a bi-directional manner. Loss of alpha9 and alpha10 nAChR-mediated activity leads to mis-expression of several key synaptic proteins, including trans-synaptic adhesion molecules, presynaptic proteins, and cytoskeletal and CREB pathway proteins. Loss of nAChR activity leads to changes in trans-synaptic adhesion proteins, inducing aberrant retrograde signals to the presynaptic terminals that ultimately impact proteins involved in exocytotic release. Loss of nAChR activity also impacts anterograde signals important for gene transcription. The key component linking both pre- and postsynaptic consequences that follow loss of nAChR activity seems to be altered expression of the trans-synaptic adhesion protein N-Cadherin, which leads to altered post-synaptic CREB signaling, and changes in proteins involved in the presynaptic OC terminal active zone structure/function.;Taken together, these findings reveal an essential role for cochlear hair cell alpha9alpha10 nAChRs and functionally coupled SK2 channels in the regulation of OC innervation and synaptogenesis. In addition, these studies begin to define the molecular composition of the OC synapse which was hitherto unknown. These findings suggest molecular mechanisms by which post-synaptic receptor activity may regulate the formation, maturation and molecular organization of the cholinergic OC synapse in the inner ear.
机译:起源于脑干的内侧传出纤维与耳蜗外毛细胞(OHC)之间的少突触(OC)突触负责调节耳蜗对传入声音的响应。 OC突触主要是胆碱能的,并使用由α9和α10亚基组成的钙渗透性兴奋性烟碱型乙酰胆碱受体(nAChR)激活由SK2(一种小电导钙激活钾通道)介导的毛细胞中的超极化钾电流。兴奋性nAChR与抑制性SK2通道之间的功能偶联定义了OC介导的OHC突触后反应.α9或alpha10 nAChR亚基的遗传消融或SK2通道导致与OHC接触的OC突触末端异常发育,并伴有失去烟碱活性。 alpha9alpha10 nAChRs和SK2通道的遗传操作已帮助确定OC神经支配在OHC电生理学和防止噪音引起的创伤方面的作用。然而,这些基因的无效突变也揭示了OC突触形成和维持中意想不到的发展作用。本论文的工作表明,nAChR和SK2活性之间的功能偶联是OC突触神经支配和维持的必要条件。结构体。使用缺少编码nAChR亚基alpha9或alpha10或SK2通道的基因的转基因小鼠模型,我证明了,尽管alpha9和alpha10 nAChR介导的活性在早期调控OHC OC神经支配的时空发育和稳定中起着至关重要的作用。出生后的年龄,小鼠耳蜗发育的出生后后期,SK2通道活性是OHC上OC突触的存活所必需的。 SK2介导的OC活性的丧失导致OC末端的变性从大约3周龄开始,到12周完成。 OC以双向方式突触。 alpha9和alpha10 nAChR介导的活性的丧失会导致几种关键突触蛋白的错误表达,包括反突触粘附分子,突触前蛋白以及细胞骨架和CREB途径蛋白。 nAChR活性的丧失会导致反突触粘附蛋白的变化,从而向突触前末端诱导异常的逆行信号,从而最终影响参与胞吐释放的蛋白质。 nAChR活性的丧失也会影响对基因转录很重要的顺行信号。在nAChR活性丧失后,连接突触前和突触后后果的关键成分似乎是反式突触粘附蛋白N-Cadherin的表达改变,这导致突触后CREB信号的改变,以及突触前涉及的蛋白的变化总的来说,这些发现揭示了耳蜗毛细胞alpha9alpha10 nAChR和功能性耦合的SK2通道在OC神经支配和突触形成中的重要作用。另外,这些研究开始确定迄今为止未知的OC突触的分子组成。这些发现提示了突触后受体活性可能调节内耳胆碱能OC突触的形成,成熟和分子组织的分子机制。

著录项

  • 作者

    Murthy, Vidya.;

  • 作者单位

    Sackler School of Graduate Biomedical Sciences (Tufts University).;

  • 授予单位 Sackler School of Graduate Biomedical Sciences (Tufts University).;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 298 p.
  • 总页数 298
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号