首页> 外文学位 >A study of the chemical and electrical disruption to mercury cadmium telluride upon interface formation and surface processing.
【24h】

A study of the chemical and electrical disruption to mercury cadmium telluride upon interface formation and surface processing.

机译:界面形成和表面处理对碲化汞镉的化学和电学破坏的研究。

获取原文
获取原文并翻译 | 示例

摘要

The chemical and electrical disruption induced to the HgCdTe lattice during such processes as metal contact formation, surface passivation, and surface etching often causes a degradation in performance of solid state HgCdTe devices. The aim of this work was to achieve a better understanding of the effects of chemical and electrical disruption that are induced in the HgCdTe lattice under conditions encountered during surface processing. To study the effects on the lattice during the initial stages of overlayer growth, atomically clean (110) HgCdTe surfaces were prepared by cleaving in situ in ultrahigh-vacuum, and photoemission electron spectroscopy and low energy electron diffraction were employed to monitor the surface chemistry, morphology, and band bending subsequent to each overlayer deposition. The depositions ranged from sub-monolayer at lower coverages to several monolayers (ML) at higher coverages. Ag, Pd, Al, and Si overlayers were investigated, and simplification the metal interfaces by reducing the Hg loss and consequent disruption of the HgCdTe lattice was achieved by lowering the substrate temperature from room temperature (RT) to lower temperature (170 K and 100 K) during the metal interface formation. For the Ag, Al, and Pd 100 K growths, more abrupt interfaces were indeed formed with less disruption and intermixing of metal and substrate components. For all three metals at low temperature the surfaces became degenerate n-type (0.6 eV above the valence band maximum) at these more abrupt interfaces, behavior not observed for the Pd and Ag RT cases. With increased metal coverage ({dollar}>{dollar}1 ML) for the Al and Pd case and upon warming to RT for the Ag case, the interfaces became disrupted and the Fermi level moved from this position toward the position seen for the corresponding RT metal growth. This Fermi level movement is consistent with the overlayer metal moving into the lattice, thus doping the semiconductor. To probe the surface in which actual device processing occurs, etching studies were conducted on the technologically important (111) surface. The etchants investigated caused a change in the surface stoichiometry primarily in the form of Cd loss, and a pinning of the Fermi level 0.15 {dollar}pm{dollar} 0.05 eV above the conduction band minimum. The nature of the bonding in Hg{dollar}sb{lcub}1-x{rcub}{dollar}Cd{dollar}sb{lcub}x{rcub}{dollar}Te was also probed by investigating the resultant defect structure of a Hg{dollar}sb{lcub}0.70{rcub}{dollar}Cd{dollar}sb{lcub}0.30{rcub}{dollar}Te/CdTe heterojunction damaged by ion bombardment. Analysis by transmission electron microscopy reveals that the bonding in HgCdTe has a more metallic nature than in CdTe.
机译:在诸如金属接触形成,表面钝化和表面蚀刻等过程中,HgCdTe晶格引起的化学和电破坏通常会导致固态HgCdTe器件性能下降。这项工作的目的是更好地了解在表面处理过程中遇到的条件下,HgCdTe晶格中诱发的化学和电学破坏的影响。为了研究覆盖层生长初期对晶格的影响,通过在超高真空中原位裂解制备原子清洁(110)的HgCdTe表面,并使用光电子能谱和低能电子衍射来监测表面化学,形态,以及在每次覆盖层沉积之后的能带弯曲。沉积范围从较低覆盖率的亚单层到较高覆盖率的几个单层(ML)。研究了Ag,Pd,Al和Si覆盖层,并通过降低衬底温度从室温(RT)降低到较低的温度(170 K和100),通过减少Hg的损失来简化金属界面并因此破坏了HgCdTe晶格。 K)在金属界面形成期间。对于Ag,Al和Pd 100 K的生长,确实形成了更突然的界面,而金属和基材成分的破坏和混合较少。对于所有三种低温金属,在这些更陡峭的界面处,表面均变为简并的n型(高于价带最大值0.6 eV),在Pd和Ag RT情况下未观察到行为。随着Al和Pd外壳的金属覆盖率({dollar}> {dollar} 1 ML)的增加以及Ag外壳的加热到室温时,界面被破坏,费米能级从该位置移向相应位置所见的位置。 RT金属的生长。费米能级移动与覆盖层金属移动到晶格中一致,从而掺杂了半导体。为了探测发生实际器件处理的表面,对具有技术重要性的(111)表面进行了蚀刻研究。所研究的蚀刻剂主要以Cd损失的形式引起了表面化学计量的变化,并且在导带最小值之上的费米能级钉扎0.15 pmpm dol 0.05 eV。 Hg {dollar} sb {lcub} 1-x {rcub} {dollar} Cd {dollar} sb {lcub} x {rcub} {dollar} Te中键合的性质还通过研究生成的a的缺陷结构进行了探讨。 Hg {dollar} sb {lcub} 0.70 {rcub} {dollar} Cd {dollar} sb {lcub} 0.30 {rcub} {dollar} Te / CdTe异质结被离子轰击损坏。透射电子显微镜分析表明,HgCdTe中的键具有比CdTe中更金属的键合性质。

著录项

  • 作者

    Carey, Glen Phillip.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.; Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号