首页> 外文学位 >Natural modes of cracked beams and identification of cracks.
【24h】

Natural modes of cracked beams and identification of cracks.

机译:裂纹梁的自然模式和裂纹识别。

获取原文
获取原文并翻译 | 示例

摘要

A method is presented for the detection and monitoring of structural cracks, based on measurements of dynamic response. The technique is to analytically model the structural dynamics based on cracked beam theories derived under the Bernoulli-Euler assumption. Crack properties (location and size of the crack) are related to the natural frequencies and mode shapes of the beam via this model. This model is incorporated into a system for the determination of crack damage through an identification process.;First, an approximate Galerkin solution to the one-dimensional cracked beam theory for the free bending motion of beams with pairs of symmetric cracks is suggested. This approach provides for the determination of the natural frequencies and mode shapes of the cracked beam. To validate the computational model, a two-dimensional finite element approach is proposed, which also allows one to determine the parameter that controls the stress concentration profile near the crack-tip in the theoretical formulation.;Existing cracked beam theory for a pair of symmetric cracks is extended to cover the free vibration of beams with a single edge crack. The natural frequencies and mode shapes of simply supported and cantilevered beams are computed for both symmetric and one-sided cracks. These predictions are confirmed by comparison to experimental and finite element results for both kinds of cracks.;An identification procedure is developed to determine the crack characteristics from dynamic measurements. This procedure is based on minimization of either the 'mean-square' or the 'max' measure of difference between measurement data and the corresponding predictions obtained from the computational model. Necessary conditions are obtained for both formulations. The method was tested for simulated damage in the form of a simply-supported beam.
机译:提出了一种基于动态响应的测量方法来检测和监测结构裂缝的方法。该技术是基于在伯努利-欧拉假设下推导的裂化梁理论对结构动力学进行分析建模。通过该模型,裂纹特性(裂纹的位置和大小)与梁的固有频率和振型有关。该模型被引入到通过识别过程确定裂纹损伤的系统中。首先,针对一维对称裂纹对的梁的自由弯曲运动,提出了一维裂纹梁理论的近似Galerkin解。该方法提供了确定裂束的固有频率和振型的方法。为了验证该计算模型,提出了一种二维有限元方法,该方法还允许在理论公式中确定控制裂纹尖端附近应力集中曲线的参数。现有的一对对称的裂纹梁理论裂纹扩展到覆盖具有单边缘裂纹的梁的自由振动。计算对称裂纹和单侧裂纹的简支梁和悬臂梁的固有频率和振型。通过与两种裂纹的实验结果和有限元结果进行比较,证实了这些预测结果。制定了识别程序,通过动态测量确定裂纹特征。此过程基于最小化测量数据与从计算模型获得的相应预测之间的差异的“均方”或“最大”度量。两种配方均获得了必要的条件。测试了该方法的简单支撑梁形式的模拟损伤。

著录项

  • 作者

    Shen, Mo-How Herman.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Aerospace.;Engineering Industrial.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 231 p.
  • 总页数 231
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号