首页> 外文学位 >The Role of Tissue Modulus and Cardiac Fibroblast Phenotype in Volume Overload Induced Heart Failure.
【24h】

The Role of Tissue Modulus and Cardiac Fibroblast Phenotype in Volume Overload Induced Heart Failure.

机译:组织模量和心脏成纤维细胞表型在超负荷导致心力衰竭中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Volume overload (VO) induced heart failure results from an increase in blood volume (preload) to the heart. The heart responds to increases in hemodynamic load through compensative remodeling. VO has a distinct pattern of remodeling compared to pressure overload induced heart failure, which results in fibrosis. VO results in a net decrease in extracellular matrix (ECM). This loss of ECM contributes to the progression of the disease due to the loss of structural integrity.;Since cardiac fibroblasts (CFs) are the main cells responsible for maintaining ECM in the heart, we characterized the in vitro phenotype of CFs isolated from a rat VO model, aortocaval fistula (ACF). Compared to sham operated animals, ACF fibroblasts displayed a phenotype that we described as "hypofibrotic". ACF CFs secreted relatively less collagen and profibrotic molecules, such as alpha-smooth muscle actin (alphaSMA) and connective tissue growth factor (CTGF). Interestingly, ACFs produce approximately twice as much transforming growth factor-beta1 (TGF-beta), a key profibrotic stimulus, as their sham counterparts. However, there were no changes in the canonical TGF-beta pathway that could account for the hypofibrotic phenotype observed in ACF fibroblasts.;Since others have shown that the cytoskeleton and the Rho/ROCK pathway play a role in fibroblast phenotype, we characterized the actin cytoskeleton in sham and ACF fibroblasts. We found that ACF CFs have significantly less F-actin than sham CFs. We were able to show that it is possible the actin cytoskeleton might account for phenotypic differences in CFs by chemically altering the amounts of F-actin and G-actin. When the cells were treated with a ROCK inhibitor, which allows F-actin to depolymerize into G-actin, CFs displayed a more hypofibrotic phenotype. Conversely, enhancement of F-actin with jasplakinolide treatment forced the CFs to have a profibrotic phenotype.;Numerous studies have linked substrate modulus with effects on the cytoskeleton. Stiff substrates tend to increase cytoskeletal organization and increase F-actin resulting in stress fiber formation in vitro. We wondered if changes in tissue modulus may account for differences in observed phenotype. To know if changes in tissue modulus account for changes in CF phenotype, we first characterized the tissue stiffness changes. We used biaxial tensile testing, which yields a direct measure of tissue modulus, an intrinsic property of the material. Here we show that ACF rats have approximately half the tissue modulus compared to control rats.;Since increased stiffness is positively correlated with CF changes towards a more profibrotic phenotype, we postulated that decreased substrate stiffness may lead to a more hypofibrotic phenotype. Specifically, we hypothesized that sham CFs on softer substrates would have a more hypo-fibrotic phenotype; conversely, CFs from ACF would behave more like normal cells on a higher stiffness. Although the phenotype of sham CFs was shifted to a more hypofibrotic direction on soft substrates, ACF fibroblasts had many indications of a dampened response to stiffness reminiscent of the effect known as "mechanical memory" described by others1,2.
机译:容量超负荷(VO)引起的心力衰竭是由心脏血液量(预负荷)增加引起的。心脏通过补偿性重塑对血液动力学负荷的增加做出反应。与压力超负荷引起的心力衰竭相比,VO具有明显的重塑模式,从而导致纤维化。 VO导致细胞外基质(ECM)的净减少。 ECM的这种丧失由于结构完整性的丧失而导致疾病的发展。;由于心脏成纤维细胞(CFs)是负责在心脏中维持ECM的主要细胞,因此我们表征了从大鼠分离的CFs的体外表型VO模型,主动脉腔瘘(ACF)。与假手术动物相比,ACF成纤维细胞表现出表型,我们称之为“低纤维化”。 ACF CFs分泌的胶原蛋白和纤维变性分子相对较少,例如α平滑肌肌动蛋白(alphaSMA)和结缔组织生长因子(CTGF)。有趣的是,ACFs产生的转化生长因子-beta1(TGF-beta)(一种关键的纤维化刺激物)的数量大约是伪造品的两倍。然而,规范的TGF-β途径没有变化可以解释在ACF成纤维细胞中观察到的低纤维化表型。由于其他研究表明细胞骨架和Rho / ROCK途径在成纤维细胞表型中起作用,因此我们对肌动蛋白进行了表征假手术和ACF成纤维细胞中的细胞骨架。我们发现,ACF CFs的F-肌动蛋白比假CFs少得多。我们能够证明肌动蛋白的细胞骨架可能通过化学改变F-肌动蛋白和G-肌动蛋白的量来解释CF的表型差异。当用ROCK抑制剂处理细胞后,ROCK抑制剂可使F-肌动蛋白解聚为G-肌动蛋白,CFs显示出更多的低纤维化表型。相反,用jasplakinolide处理增强F-肌动蛋白使CF具有纤维化表型。大量研究已将底物模量与对细胞骨架的影响联系起来。僵硬的底物往往会增加细胞骨架的组织并增加F-肌动蛋白,从而导致体外应力纤维的形成。我们想知道组织模量的变化是否可以解释观察到的表型差异。要知道组织模量的变化是否解释了CF表型的变化,我们首先对组织硬度的变化进行了表征。我们使用了双轴拉伸测试,可以直接测量组织模量,即材料的固有特性。在这里,我们显示,与对照组相比,ACF大鼠的组织模量大约为一半。由于刚度增加与CF向更纤维化表型的变化呈正相关,因此我们推测底物刚度降低可能导致更低纤维化的表型。具体而言,我们假设在较软的基质上进行假CFs会出现更多的低纤维化表型。相反,来自ACF的CF在更高的刚度下表现得更像普通细胞。尽管假CFs的表型在软质基质上向更低纤维化的方向转移,但ACF成纤维细胞有许多迹象表明其对刚度的反应减弱,让人联想到其他人1,2所描述的“机械记忆”效应。

著录项

  • 作者

    Childers, Rachel Caitlin.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号