首页> 外文学位 >Optimization of environmental conditions and electron flow for enhanced hydrogen production by cyanobacterial species Synechocystis sp. PCC 6803.
【24h】

Optimization of environmental conditions and electron flow for enhanced hydrogen production by cyanobacterial species Synechocystis sp. PCC 6803.

机译:优化环境条件和电子流,以提高蓝细菌物种Synechocystis sp。产氢的能力。 PCC 6803。

获取原文
获取原文并翻译 | 示例

摘要

Many conditions affecting hydrogen (H2) production by the cyanobacterium, Synechocystis sp. PCC 6803, were optimized to yield maximum H2 accumulation. Biological H2 production from photosynthetic species is a promising form of renewable energy since an abundant supply of sunlight hits the Earth every day, and photosynthetic bacteria can harness this solar energy and efficiently split water to produce H2 in a safe, clean manner. The H2 could then be used in fuel cells in a closed cycle, with water and heat as the only byproducts. There are many techniques currently in development to maximize H2 production. We chose to use statistical optimization procedures to identify the factors which have the greatest impact on H2 production, and simultaneously optimize them. Initially we optimized concentrations of NH 4+, HCO3-, and SO4 2-, and achieved a 148-fold increase in H2 production over sulfur deprived cultures, which have been shown to produce more H2 than cultures grown on complete BG-11 media. With 0.52 mM NH4 +, 20.1 muM SO42-, and 46 mM HCO 3-, 0.81+/-0.36 mumol H2 mg Chl -1 h-1 was obtained. This increase was associated with a 44-fold increase in glycogen concentration over cultures grown on BG-11. Glycogen breakdown provides substrate to the hydrogenase enzyme under dark, anaerobic conditions. Since interaction effects are strong, we then optimized pH and NH4+ simultaneously, and achieved another 1.94-fold increase over the previously optimized media. This was achieved with an advanced optimization algorithm, which had never been applied to biotechnological applications. Both of these increases in H2 production were accomplished under optimal glycogen accumulation conditions, which include acclimation to the media formulation over an extended light period, followed by immediate anaerobic, dark fermentative conditions. In an additional study we explored 24-hour H2 production under natural, diurnal light/dark cycling, and examined glycogen accumulation dynamics as well as electron availability to the hydrogenase. Electron availability was manipulated by exposing the cultures to various inhibitors of enzymes in the photosynthetic and respiratory electron transport chains. Over 3 days, with 9.4 mM KCN and 1.5 mM malonate in the previously optimized media we were able to increase H2 production 30-fold over standard BG-11 without inhibitors.
机译:许多条件会影响蓝细菌蓝藻属(Synechocystis sp。)的产氢(H2)。对PCC 6803进行了优化以产生最大的H2积累。由于每天都有大量的阳光照射到地球,因此光合作用产生的生物H2是一种有前途的可再生能源,光合细菌可以利用这种太阳能并有效地分解水以安全,清洁的方式生产H2。然后可以将H2封闭地用于燃料电池,而水和热量是唯一的副产物。当前正在开发许多技术来最大化氢气的产生。我们选择使用统计优化程序来确定对氢气生产影响最大的因素,并同时对其进行优化。最初,我们优化了NH 4 +,HCO3-和SO4 2-的浓度,并实现了相对于缺硫的培养物,H2的产量增加了148倍,后者已被证明比在完全BG-11培养基上培养的培养基产生更多的H2。用0.52 mM NH4 +,20.1μMSO42-和46 mM HCO 3-得到0.81 +/- 0.36μmolH2 mg Chl -1 h-1。这种增加与糖原浓度比BG-11上培养的培养物增加44倍有关。糖原分解在黑暗,厌氧条件下为氢化酶提供了底物。由于相互作用作用很强,因此我们同时优化了pH和NH4 +,并且比以前优化的介质又提高了1.94倍。这是通过高级优化算法实现的,该算法从未应用于生物技术应用。 H2产量的这两种增加都是在最佳糖原积累条件下完成的,其中包括在延长的光照期内适应培养基配方,然后立即进行厌氧,黑暗发酵条件。在另一项研究中,我们探索了自然,昼夜明暗循环下24小时制氢的效果,并研究了糖原积累动态以及氢化酶的电子利用率。通过将培养物暴露于光合作用和呼吸电子传输链中各种酶抑制剂来控制电子的利用率。在3天的时间里,使用9.4 mM KCN和1.5 mM丙二酸酯在先前优化的培养基中,我们能够将H2产量增加到不使用抑制剂的标准BG-11的30倍。

著录项

  • 作者

    Burrows, Elizabeth H.;

  • 作者单位

    Oregon State University.;

  • 授予单位 Oregon State University.;
  • 学科 Alternative Energy.;Energy.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号