首页> 外文学位 >Understanding the role of heat recirculation in enhancing the speed of premixed laminar flames in a parallel plate micro-combustor.
【24h】

Understanding the role of heat recirculation in enhancing the speed of premixed laminar flames in a parallel plate micro-combustor.

机译:了解热再循环在平行板微燃烧器中提高预混层流火焰速度的作用。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates the role of heat recirculation in enhancing the flame speeds of laminar flames stabilized in a parallel plate reactor by: (1) developing analytical models that account for conjugate heat transfer with the wall; and (2) making measurements of temperature profiles in a simulated microcombustor using non-intrusive FTIR spectroscopy from which heat recirculation is inferred. The analytical models have varying degrees of complexity. A simple heat transfer model simulates the flame by incorporating a concentrated heat release function along with constant temperature wall model. The next level model accommodates conjugate heat transfer with the wall along with a built in heat loss model to the environment. The heat transfer models identify the thermal design parameters influencing the temperature profiles and the Nusselt number. The conjugate heat transfer model is coupled with a species transport equation to develop a 2-D model that predicts the flame speed as an eigenvalue of the problem. The flame speed model shows that there are three design parameters (wall thermal conductivity ratio (kappa), wall thickness ratio (tau) and external heat loss parameter (NuE)) that influence the flame speed. Finally, it is shown that all these three parameters really control the total heat recirculation which is a single valued function of the flame speed and independent of the velocity profile (Plug or Poiseuille flow). On the experimental side, a previously developed non-intrusive diagnostic technique based on FTIR spectroscopy of CO2 absorbance is improved by identifying the various limitations (interferences from other species, temperature profile fitting, ... etc) and suggesting improvements to each limitation to make measurements in a silicon walled, simulated microcombustor. Methane/Air and Propane/Air flames were studied for different equivalence ratios and burning velocities. From the temperature profiles it can be seen that increasing the flame speed pushes the flames further up the channel and increases the combustors inner gas and outer wall temperatures (measured using IR thermography). The temperature profiles measured are used to make a 2-D heat recirculation map for the burner as a function of the equivalence ratio and burning velocity. The experimental results are compared to the analytical models predictions which show a linear trend between flame speed and heat recirculation.
机译:本文研究了热循环在提高平行板反应器中稳定的层流火焰速度中的作用,方法是:(1)建立分析模型,考虑与壁的共轭传热; (2)使用非介入式FTIR光谱仪在模拟的微型燃烧器中测量温度分布,从中推断出热量再循环。分析模型具有不同程度的复杂性。一个简单的传热模型通过结合集中放热功能和恒温壁模型来模拟火焰。下一级别的模型可适应与墙体的共轭传热,以及针对环境的内置热损失模型。传热模型确定影响温度曲线和Nusselt数的热设计参数。共轭传热模型与物质传递方程相结合,以开发二维模型,该模型将火焰速度预测为问题的特征值。火焰速度模型表明,存在三个影响火焰速度的设计参数(壁导热率(kappa),壁厚比(tau)和外部热损失参数(NuE))。最终,表明所有这三个参数实际上控制着总热量再循环,这是火焰速度的单值函数,并且与速度分布(塞流或泊瓦流)无关。在实验方面,通过确定各种局限性(来自其他物种的干扰,温度分布拟合等)并提出对每种局限性的改进建议,可以改进先前开发的基于FTIR光谱对CO2吸收的非侵入式诊断技术。在硅壁模拟微燃烧器中进行测量。研究了甲烷/空气和丙烷/空气火焰的不同当量比和燃烧速度。从温度曲线可以看出,提高火焰速度会将火焰进一步推向通道,并增加燃烧室的内部气体和外壁温度(使用红外热像仪测量)。测得的温度曲线用于绘制燃烧器的二维热循环图,该图是当量比和燃烧速度的函数。将实验结果与分析模型的预测结果进行比较,预测结果显示了火焰速度和热再循环之间的线性趋势。

著录项

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号