首页> 外文学位 >Influences of catalyst particle geometry on fixed bed reactor near-wall heat transfer using CFD.
【24h】

Influences of catalyst particle geometry on fixed bed reactor near-wall heat transfer using CFD.

机译:催化剂颗粒几何形状对使用CFD的固定床反应器近壁传热的影响。

获取原文
获取原文并翻译 | 示例

摘要

Fixed bed reactors are an essential part of the chemical industry as they are used in a wide variety of chemical processes. To better model these systems a more fundamental understanding of the processes taking place in a fixed bed is required.;Fixed bed models are traditionally based on high tube-to particle diameter ratio (N) beds, where temperature and flow profile gradients are mild and can be averaged. Low-N beds are used in extremely exo- and endothermic processes on the tube side of tube and shell type reactors. In these beds, heat transfer is one of the most important aspects. The importance of accurate modeling of heat transfer and its dependence on accurate modeling of the flow features leads to the need for studying the phenomena in these low-N beds in detail.;In this work a comparative study is made of the influence of spherical and cylindrical packing particle shapes, positions and orientations on the rates of heat transfer in the near-wall region in a steam reforming application. Computational Fluid Dynamics (CFD) is used as a tool for obtaining the detailed flow and temperature information in a low-N fixed bed. CFD simulation geometries of discrete particle packed beds are designed and methods for data extraction and analysis are developed.;After conceptual and quantitative analysis of the simulation data it is found that few clear relations between the complex phenomena of flow and heat transfer can be easily identified. Investigated features are the orientations of the particle in the flow, and many design parameters, such as the number and size of longitudinal holes in the particle and external features on the particle. We find that many of the investigated features are related and their individual influences could not be isolated in this study. Some of the related features are, for example, the number of holes in the particle design and the particle orientation in the flow.;Some general conclusions could be drawn. External features on the particles enhance the overall heat transfer properties by better mixing of the flow field. When holes are present in the cylindrical particle design, heat transfer effectiveness can be improved with fewer larger holes.;After identifying the packing-related features influencing the near-wall heat transfer under steam reforming conditions, an attempt was made to incorporate the steam reforming reaction in the simulation. In the initial attempts the reaction was modeled as an energy flux at the catalyst particle surfaces. This approach was based on the abilities of the CFD code, but turned out not accurate enough. Elimination of the effects of local reactant depletion and the lack of solid energy conduction in the catalyst particles resulted in an unphysical temperature field.;Several suggestions, based on the results of this study, are made for additional aspects of particle design to be investigated. Additionally, suggestions are made on how to incorporate the modeling of a reaction in fixed bed heat transfer simulations.
机译:固定床反应器是化学工业的重要组成部分,因为它们用于多种化学过程中。为了更好地对这些系统进行建模,需要对固定床中发生的过程有更基本的了解。固定床模型传统上是基于高管径比(N)的床,其中温度和流量分布梯度温和且可以平均。低氮床用于管式反应器和管壳式反应器的极端放热和吸热过程中。在这些床中,传热是最重要的方面之一。对传热进行精确建模的重要性及其对流动特征精确建模的依赖导致需要详细研究这些低氮床层中的现象。在这项工作中,对球形和球形的影响进行了比较研究。在蒸汽重整应用中,圆柱形填料颗粒的形状,位置和取向对近壁区域中的传热速率产生了影响。计算流体动力学(CFD)用作获取低N固定床中详细的流量和温度信息的工具。设计了离散颗粒填充床的CFD模拟几何形状,并开发了数据提取和分析的方法。;在对模拟数据进行概念和定量分析后,发现很难轻松识别出复杂的流动与传热现象之间的明确关系。 。研究的特征是粒子在流中的方向,以及许多设计参数,例如粒子中纵向孔的数量和大小以及粒子上的外部特征。我们发现许多被调查的特征是相关的,并且它们的个体影响在这项研究中无法孤立。一些相关的特征是,例如,粒子设计中的孔数和流中的粒子方向。;可以得出一些一般性的结论。颗粒上的外部特征通过更好地混合流场来增强整体传热性能。当圆柱状颗粒设计中存在孔时,可以通过减少较大的孔来提高传热效率。;在确定了在蒸汽重整条件下会影响近壁传热的填料相关特征后,尝试将蒸汽重整纳入模拟中的反应。在最初的尝试中,将反应建模为催化剂颗粒表面的能量通量。这种方法基于CFD代码的功能,但结果不够准确。消除了局部反应物耗竭的影响和催化剂颗粒中缺乏固体能量传导的问题,从而导致了非物理的温度场。;基于这项研究的结果,提出了一些建议,以研究颗粒设计的其他方面。此外,还提出了有关如何将反应建模纳入固定床传热模拟的建议。

著录项

  • 作者

    Nijemeisland, Michiel.;

  • 作者单位

    Worcester Polytechnic Institute.;

  • 授予单位 Worcester Polytechnic Institute.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 286 p.
  • 总页数 286
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号