首页> 外文学位 >Modeling of combustion chamber convective heat transfer for internal combustion engines.
【24h】

Modeling of combustion chamber convective heat transfer for internal combustion engines.

机译:内燃机燃烧室对流传热的建模。

获取原文
获取原文并翻译 | 示例

摘要

An investigation of multi-dimensional turbulence models for calculating engine in-cylinder convective heat transfer was performed. Separate analyses of turbulent transport in the bulk flow and near wall regions were made.; Calculations showed the commonly used {dollar}k - epsilon{dollar} model to be deficient in several areas that are important for in-cylinder flows. Separate modifications to the model for separated shear layer and swirling flows were successfully formulated.; An alternative near wall turbulence model was developed. The new model, designated the boundary layer wall model, solves a set of boundary layer equations on a separate grid. The wall layer flow solution does not rely on the assumption of turbulence equilibrium or prescribed mean flow behaviour. Simulations covering a wide range of complex flow conditions demonstrated that the new model consistently outperforms conventional wall functions.; Using the new modeling methodology, a study of low heat rejection (LHR) engine heat transfer was performed in order to understand the effects of elevated wall temperatures on in-cylinder heat loss. The focus was on two mechanisms for enhancing heat transfer in the presence of high surface temperatures which were thought to play an important role in determining the heat loss from LHR engines. They are steepening of wall layer temperature gradients due to piston-induced compression heating and increasing wall layer penetration of burned gases due to a reduction in flame quench distance.; The analysis demonstrated that neither near wall gas compression heating nor thinning of the flame quench region can cause heat transfer to increase with wall temperature. This result directly contradicts recent controversial experimental studies and supports the view that insulating the combustion chamber will reduce in-cylinder heat loss and thereby improve engine efficiency.
机译:对用于计算发动机缸内对流传热的多维湍流模型进行了研究。分别对整体流动和壁附近区域的湍流输运进行了分析。计算表明,常用的{k}-epsilon {dollar}模型在一些对于缸内流动很重要的区域是不足的。成功地为分离的剪切层和旋流建立了模型的单独修改。开发了另一种近壁湍流模型。新模型称为边界层墙模型,可以在单独的网格上求解一组边界层方程。壁层流动解决方案不依赖于湍流平衡或规定的平均流动行为的假设。模拟涵盖了广泛的复杂流动条件,表明新模型始终优于传统的墙面功能。使用新的建模方法,进行了低排热(LHR)发动机传热的研究,以了解壁温升高对缸内热损失的影响。重点是在存在高表面温度的情况下增强传热的两种机制,它们被认为在确定LHR发动机的热损失中起着重要作用。它们由于活塞引起的压缩加热而使壁层温度梯度变陡,并且由于火焰猝灭距离的减小而增加了燃烧气体的壁层渗透。分析表明,近壁气体压缩加热和火焰猝灭区域的变薄都不会导致热传递随壁温的增加而增加。该结果直接与最近有争议的实验研究相矛盾,并支持了这样的观点,即对燃烧室进行隔热将减少缸内热损失,从而提高发动机效率。

著录项

  • 作者

    Jennings, Mark John.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Engineering Automotive.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1991
  • 页码 508 p.
  • 总页数 508
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术及设备;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号