首页> 外文学位 >Fracture mechanisms of the SCS-6 fiber-reinforced titanium alloy matrix composites.
【24h】

Fracture mechanisms of the SCS-6 fiber-reinforced titanium alloy matrix composites.

机译:SCS-6纤维增强钛合金基复合材料的断裂机理。

获取原文
获取原文并翻译 | 示例

摘要

The mechanical properties and failure mechanisms of several SCS-6/Ti alloy matrix composites have been studied. Tensile, notched 3-point bending, low cycle fatigue and fatigue crack propagation test were conducted at room temperature on the unidirectional SiC fiber-reinforced Ti-15V-3Cr-3Al-3Sn, Ti-6Al-4V and Ti-25Al-10Nb-3V-1Mo composites. Microstructural parameters controlling the deformation, damage initiation and growth of the composites were investigated using metallographic technique and fractographic analysis. These parameters include interfacial reaction between fiber and matrix, interfacial mechanical properties, matrix toughness, fiber strength and loading conditions.; The resulting deformation and fracture mechanisms of these composites under quasi-static and notched 3-point bend loading were classified on the basis of the ratio of the fiber strength ({dollar}sigmasb{lcub}rm f{rcub}{dollar}) to interfacial shear strength ({dollar}tausb{lcub}rm i{rcub}{dollar}) vs. matrix toughness. These failure mechanisms will provide a scientific basis for the development of an analytical model to predict the micro- and macro-fracture processes of fiber-reinforced metal matrix composites. Furthermore, the low cycle fatigue damage diagram was constructed using the maximum stress in the fiber vs. fatigue life. Depending on the stress levels applied, the fatigue damage of the composites can be classified into three regions: (1) fiber breakage dominated, (2) interfacial cracking, matrix cracking and fiber breakage dominated (progressive) and (3) matrix cracking dominated. Matrix cracking with bridging fibers in the wake of the crack tip was the major mechanism for the fatigue crack propagation behavior of the composites. The transition from the noncatastrophic to catastrophic mode I failure was controlled by the fiber breakage in the wake of crack. A micromechanical model was also proposed to predict the fatigue crack propagation behavior of the composites. These results will be used as guidelines for the selection of processing parameters, fiber coating, and matrix modification, in order to develop high-performance metal matrix composites.
机译:研究了几种SCS-6 / Ti合金基复合材料的力学性能和破坏机理。在室温下对单向SiC纤维增强的Ti-15V-3Cr-3Al-3Sn,Ti-6Al-4V和Ti-25Al-10Nb-进行了拉伸,缺口三点弯曲,低周疲劳和疲劳裂纹扩展测试。 3V-1Mo复合材料。利用金相技术和分形分析技术研究了控制复合材料变形,损伤引发和生长的微结构参数。这些参数包括纤维与基质之间的界面反应,界面机械性能,基质韧性,纤维强度和负载条件。根据纤维强度({dollar} sigmasb {lcub} rm f {rcub} {dollar})与界面剪切强度({dolus} tausb {lcub} rm i {rcub} {dollar})与基质韧性之间的关系。这些破坏机制将为开发预测纤维增强金属基复合材料的微观和宏观断裂过程的分析模型提供科学依据。此外,利用纤维中的最大应力与疲劳寿命的对比来构建低周疲劳损伤图。根据施加的应力水平,复合材料的疲劳损伤可分为三个区域:(1)纤维断裂占主导,(2)界面裂纹,基体裂纹和纤维断裂占主导(渐进),(3)基体裂纹占主导。裂纹尖端后桥接纤维的基体开裂是复合材料疲劳裂纹扩展行为的主要机理。从非灾难性故障模式到灾难性故障模式I的转变受裂纹后纤维断裂的控制。还提出了一种微机械模型来预测复合材料的疲劳裂纹扩展行为。这些结果将用作选择加工参数,纤维涂层和基体改性的指南,以开发高性能的金属基复合材料。

著录项

  • 作者

    Jeng, Shwangming.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1991
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号